Sa se arate ca pentru orice doua matrice \( X, Y\in M_{n}(\mathbb{C}) \) are loc inegalitatea:
\( rang(XY)-rang(YX)\leq\left[\frac{n}{2}\right] \).
Pentru doua matrice X, Y avem rank(XY)-rank(YX)<=[n/2]
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Pentru doua matrice X, Y avem rank(XY)-rank(YX)<=[n/2]
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
-
Bogdan Cebere
- Thales
- Posts: 145
- Joined: Sun Nov 04, 2007 1:04 pm
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Presupunem contrariul. Deci exista \( X, Y \in \mathcal M_n(\mathbb{C}) \) cu \( rang(XY)-rang(YX)>\left[\frac{n}{2}\right] \).
Cum rangul unei matrici e numar natural rezulta ca \( rang(XY)-rang(YX)\geq \left[\frac{n}{2}\right]+1>\frac{n}{2}\ (1) \)
Folosim acum inegalitatea lui Sylvester:
\( rang(YX)\geq rang(Y)+rang(X)-n\ (2) \)
(1)+(2)\( \Rightarrow rang(XY)>rang(X)+rang(Y)-\frac{n}{2}\ (3) \)
Acum folosim \( rang(XY)\leq min\{rang(X),rang(Y)\} \), care combinata cu (3) da \( rang(X)<\frac{n}{2},\ rang(Y)<\frac{n}{2} \) de unde
\( rang(XY)<\frac{n}{2},\ rang(YX)<\frac{n}{2} \), ceea ce este in contradictie cu presupunerea.
Egalitatea nu am gasit-o inca, dar la olimpiada in 2004 se cerea un exemplu, asa ca este. O sa-l caut si o sa-l postez.
Cum rangul unei matrici e numar natural rezulta ca \( rang(XY)-rang(YX)\geq \left[\frac{n}{2}\right]+1>\frac{n}{2}\ (1) \)
Folosim acum inegalitatea lui Sylvester:
\( rang(YX)\geq rang(Y)+rang(X)-n\ (2) \)
(1)+(2)\( \Rightarrow rang(XY)>rang(X)+rang(Y)-\frac{n}{2}\ (3) \)
Acum folosim \( rang(XY)\leq min\{rang(X),rang(Y)\} \), care combinata cu (3) da \( rang(X)<\frac{n}{2},\ rang(Y)<\frac{n}{2} \) de unde
\( rang(XY)<\frac{n}{2},\ rang(YX)<\frac{n}{2} \), ceea ce este in contradictie cu presupunerea.
Egalitatea nu am gasit-o inca, dar la olimpiada in 2004 se cerea un exemplu, asa ca este. O sa-l caut si o sa-l postez.
Last edited by Beniamin Bogosel on Tue Mar 18, 2008 9:15 pm, edited 1 time in total.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Exemple pt egalitate:
Pt n=2:
\( A=\left(\matrix{1&0 \cr 0&0}\right) \)
\( B=\left(\matrix{0&1 \cr 0&0}\right) \)
Pt n=2k
\( A_{2k}=\left(\matrix{A&0&...&0 \cr 0&A&...&0 \cr \vdots & & \ddots \cr 0&0&...&A}\right) \) \( si B_{2k}=\left(\matrix{B&0&...&0 \cr 0&B&...&0 \cr \vdots & & \ddots \cr 0&0&...&B}\right) \)
Pt n=2k+1
\( A_{2k+1}=\begin{pmatrix}A_{2k}&0 \\ 0&0 \end{pmatrix} \) si \( B_{2k+1}=\begin{pmatrix}B_{2k}&1 \\ 0&0 \end{pmatrix} \)
Nu mi-au placut niciodata problemele cu exemple. Unele sunt tare artificiale daca nu ai mai vazut asa ceva. Cu toate astea, pentru a demonstra un caz de egalitate trebuie adesea folosite exemple, care nu sunt totdeauna simple.
Pt n=2:
\( A=\left(\matrix{1&0 \cr 0&0}\right) \)
\( B=\left(\matrix{0&1 \cr 0&0}\right) \)
Pt n=2k
\( A_{2k}=\left(\matrix{A&0&...&0 \cr 0&A&...&0 \cr \vdots & & \ddots \cr 0&0&...&A}\right) \) \( si B_{2k}=\left(\matrix{B&0&...&0 \cr 0&B&...&0 \cr \vdots & & \ddots \cr 0&0&...&B}\right) \)
Pt n=2k+1
\( A_{2k+1}=\begin{pmatrix}A_{2k}&0 \\ 0&0 \end{pmatrix} \) si \( B_{2k+1}=\begin{pmatrix}B_{2k}&1 \\ 0&0 \end{pmatrix} \)
Nu mi-au placut niciodata problemele cu exemple. Unele sunt tare artificiale daca nu ai mai vazut asa ceva. Cu toate astea, pentru a demonstra un caz de egalitate trebuie adesea folosite exemple, care nu sunt totdeauna simple.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Iata si solutia autorului, care e mai scurta si directa
Presupunem \( rang(XY)\geq rang (YX) \)
\( rang(XY)-rang(YX) \leq rang(XY)\leq rang(X)\ (1) \)
\( rang(XY)-rang(YX) \leq rang(Y)+n-rang(X)-rang(Y) \) (rezulta din Sylvester si inegalitatea cu rangul produsului)\( \Rightarrow rang(XY)-rang(YX)\leq n-rang(X)\ (2) \)
Concluzia rezulta din (1)+(2)!
Presupunem \( rang(XY)\geq rang (YX) \)
\( rang(XY)-rang(YX) \leq rang(XY)\leq rang(X)\ (1) \)
\( rang(XY)-rang(YX) \leq rang(Y)+n-rang(X)-rang(Y) \) (rezulta din Sylvester si inegalitatea cu rangul produsului)\( \Rightarrow rang(XY)-rang(YX)\leq n-rang(X)\ (2) \)
Concluzia rezulta din (1)+(2)!