Rolle si determinanti

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
c.adryan
Euclid
Posts: 19
Joined: Fri Feb 29, 2008 12:22 pm

Rolle si determinanti

Post by c.adryan »

Fie \( f_{i}:[a,b]\rightarrow R ,i=\overline { o,n } \) n+1 functii continue pe [a,b] si derivabile pe (a,b).
Daca \( a\leq \alpha_{1}<\alpha_{2}<...<\alpha_{n}\leq b \) atunci pentru orice \( i=\overline { 0,n } , \exists c\in (\alpha_{i},\alpha_{i+1}) \) astfel incat
\( \left| \begin{array}{clr}
f_{0}^\prime(c) & f_{1}^\prime(c) & .. .&f_{n}^\prime(c) \\
f_{0}(\alpha_{1}) & f_{1}(\alpha_{1}) & .. .&f_{n}(\alpha_{1}) \\
...&...&...&...\\...&...&...&...\\
f_{0}(\alpha_{n})&f_{1}(\alpha_{n})&..&f_{n}(\alpha_{n})
\end{array} \right|=0

\)
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Consideram functia \( g:[a,b]\to \mathbb R \),
\( g(x)=\left| \begin{matrix} f_0(x)&f_1(x)&...&f_n(x)\\
f_0(\alpha_1)&f_1(\alpha_1)&...&f_n(\alpha_1)\\
\vdots&\vdots&\ddots&\vdots\\
f_0(\alpha_n)&f_1(\alpha_n)&...&f_n(\alpha_n)\end{matrix}\right| \)
.
Evident, \( g \) e functie continua pe \( [a,b] \) si derivabila pe \( (a,b) \), fiind combinatie liniara de functii continue si derivabile.

Atunci pentru \( 0\leq i\leq n \) oarecare avem ca
\( g(\alpha_i)=g(\alpha_{i+1})=0 \) pentru ca determinantii au doua linii egale.
Deci \( g \) e functie Rolle pe intervalul considerat si din teorema lui Rolle exista \( c \in (\alpha_i,\alpha_{i+1}) \) cu \( g^\prime(c)=0 \), adica concluzia.

Faptul ca derivata lui \( g \) se obtine derivand functiile de pe prima linie a determinantului se obtine din formula determinantului sau dezvoltind determinantul dupa prima linie.
Last edited by Beniamin Bogosel on Tue Mar 25, 2008 9:23 pm, edited 1 time in total.
User avatar
c.adryan
Euclid
Posts: 19
Joined: Fri Feb 29, 2008 12:22 pm

Post by c.adryan »

si eu am facut la fel, dar am folosit \( g^\prime (x)=\sum_{j=0}^{n}\left| \begin{array}{clr}
f_{0}(x) & f_{1}(x) & .. .&f_{n}(x) \\
f_{0}(\alpha_{1}) & f_{1}(\alpha_{1}) & .. .&f_{n}(\alpha_{1}) \\
...&...&...&...\\...&...&...&...\\f_{0}^\prime(\alpha_{j}) & f_{1}^\prime(\alpha_{j}) & .. .&f_{n}^\prime(\alpha_{j})\\...&...&...&...\\...&...&...&...\\
f_{0}(\alpha_{n})&f_{1}(\alpha_{n})&...&f_{n}(\alpha_{n})
\end{array} \right|
\)
si m-am blocat
Post Reply

Return to “Algebra”