Matrice cu elemente numere reale si det-ul zero

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
bogdanl_yex
Pitagora
Posts: 91
Joined: Thu Jan 31, 2008 9:58 pm
Location: Bucuresti

Matrice cu elemente numere reale si det-ul zero

Post by bogdanl_yex »

Fie \( A \in M_{n}(R),\ A \neq O_{n} \) cu \( \det A=0 \). Sa se arate ca exista o matrice \( B \in M_{n}(R),\ B \neq O_{n} \), astfel incat \( AB=O_{n} \).
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
bae
Bernoulli
Posts: 234
Joined: Tue Oct 02, 2007 10:39 pm

Post by bae »

***
Last edited by bae on Sat Feb 13, 2010 9:36 pm, edited 1 time in total.
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Ceva asemanator cu problema de la a XI-a de la judeteana. Daca \( \det A=0 \) atunci \( rang(A)\leq n-1 \). Luam o matrice \( B \) de rang 1 si din problema de la judeteana 2008 exista o matrice inversabila \( X \) cu \( A(XB)=O \). Si gata. Evident \( XB\neq O \).
Asta pentru problema initiala. Pentru cea propusa de domnul bae nu stiu inca raspunsul. :)
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

Fie \( rang(A)=r \) unde \( 1\leq r \leq n-1 \), atunci exista P,R inversabile a.i. \( A=PI_rR \). Unde \( I_r \) este matricea care are pe pozitiile \( (i,i) \) cu \( i=\overline{1,r} \) toate elementele egale cu 1, iar in rest egale cu 0. Este usor de verificat ca matricea \( PI_r \) are ultimele n-r coloane nule. Fie \( T \) (nenula) care are primele \( r \) linii nule. Se verifica usor ca \( PI_rT=O_n \). Astfel putem alege \( B=R^{-1}T \) si obtinem \( AB=O_n \).

Analog, pentru cazul \( BA=O_n \) observam ca matricea \( I_rR \) are ultimele \( n-r \) linii nule si consideram \( B=TP^{-1} \), cu T (nenula) avand primele r coloane nule.
A mathematician is a machine for turning coffee into theorems.
User avatar
bogdanl_yex
Pitagora
Posts: 91
Joined: Thu Jan 31, 2008 9:58 pm
Location: Bucuresti

Post by bogdanl_yex »

Eu zic ca nu ai fost atent la ce a cerut dnul Bae...a precizat ca in acelasi timp \( AB=O_{n} \)si \( BA=O_{n} \):D
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

bogdanl_yex wrote:Eu zic ca nu ai fost atent la ce a cerut dnul Bae...a precizat ca in acelasi timp \( AB=O_{n} \) si \( BA=O_{n} \):D
Da, ai dreptate. Dar se poate 'ajusta' :P. Fie \( B=R^{-1}TP^{-1} \), unde T sa aiba primele r linii si primele r coloane nule. Si se respecta cerinta ca \( AB=BA=O_n \).
A mathematician is a machine for turning coffee into theorems.
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Alta solutie.

Multimea matricelor \( M_{n}(\mathbb{R}) \) este un spatiu vectorial de dimensiune \( n^{2} \) peste \( \mathbb{R} \). Presupunem, prin reducere la absurd, ca pentru orice \( X\in M_{n}(\mathbb{R}), X\neq O_{n} \), avem \( AX\neq O_{n} \).

Acum, sa definim aplicatia \( \varphi :M_{n}(\mathbb{R})\to M_{n}(\mathbb{R}) \), \( \varphi(X)=AX \) care este injectiva din presupunerea facuta.
Cum spatiul \( M_{n}(\mathbb{R}) \) este de dimensiune finita, rezulta ca aplicatia \( \varphi \) este si surjectie. Acum, luand matricea unitate \( I_{n}\in M_{n}(\mathbb{R}) \), exista o matrice \( Y\in M_{n}(\mathbb{R}) \) astfel incat \( \varphi (Y)=I_{n} \), i.e. \( AY=I_{n} \) si trecand la determinanti, obtinem ca \( 0=1 \), contradictie. \( \qed \)
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
bogdanl_yex
Pitagora
Posts: 91
Joined: Thu Jan 31, 2008 9:58 pm
Location: Bucuresti

Post by bogdanl_yex »

Fie \( 1\leq rangA=k \leq n-1 \Rightarrow \exists P,Q \in M_{n}(R) \) inversabile astfel incat \( A=P \begin{pmatrix}I_{k}&0 \\ 0&0 \end{pmatrix} Q \).
Fie \( B=Q^{-1} \begin{pmatrix}0&0 \\ 0&I_{n-k} \end{pmatrix}P^{-1} \).
Observam ca \( B \neq O_{n} \)
\( AB=P \begin{pmatrix}I_{k}&0 \\ 0&0 \end{pmatrix} QQ^{-1} \begin{pmatrix}0&0 \\ 0&I_{n-k} \end{pmatrix}P^{-1}=P O_{n} P^{-1}=O_{n} \)
\( BA=Q^{-1} \begin{pmatrix}0&0 \\ 0&I_{n-k} \end{pmatrix}P^{-1}P \begin{pmatrix}I_{k}&0 \\ 0&0 \end{pmatrix} Q=Q^{-1}O_{n}Q=O_{n} \) q.e.d.
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
Tiberiu Popa
Euclid
Posts: 19
Joined: Thu Oct 04, 2007 1:32 am

Post by Tiberiu Popa »

Asta voia sa zica si Radu :)

Inca o solutie ar fi sa consideram polinomul minimal \( m \) al lui \( A \). Daca \( m(X) = X \cdot q(X) \), atunci luam \( B = q(A) \).
bae
Bernoulli
Posts: 234
Joined: Tue Oct 02, 2007 10:39 pm

Post by bae »

***
Last edited by bae on Sat Feb 13, 2010 9:35 pm, edited 1 time in total.
User avatar
bogdanl_yex
Pitagora
Posts: 91
Joined: Thu Jan 31, 2008 9:58 pm
Location: Bucuresti

Post by bogdanl_yex »

Dar de unde stim ca acest \( q(A) \neq O_{n} \)?
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
Post Reply

Return to “Algebra”