Traian Lalescu 2008, problema 3

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
bogdanl_yex
Pitagora
Posts: 91
Joined: Thu Jan 31, 2008 9:58 pm
Location: Bucuresti

Traian Lalescu 2008, problema 3

Post by bogdanl_yex »

Fie \( f:[0, \infty) \rightarrow (0, \infty) \) o functie continua si crescatoare. Aratati ca :

\( f(0) \int_{0}^{1}f(x)dx \leq \int_{0}^{1}f^{2}(x) dx \)

Constantin Buse
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
User avatar
Alin Galatan
Site Admin
Posts: 247
Joined: Tue Sep 25, 2007 9:24 pm
Location: Bucuresti/Timisoara/Moldova Noua

Post by Alin Galatan »

Integram \( f(x)f(0)\leq f^2(x) \).
aleph
Thales
Posts: 123
Joined: Mon Dec 24, 2007 2:06 am

Post by aleph »

Iar f nici nu trebuie să fie continuă; doar crescătoare pe [0,1].
User avatar
alex
Arhimede
Posts: 5
Joined: Fri Apr 04, 2008 7:23 pm
Location: bacau/bucuresti

Post by alex »

Se poate folosi inegalitatea lui Cebasev...apoi teorema de medie si faptul ca functia e crescatoare...
"Cand altii te cred fericit si tu crezi ca nu esti, ia-te dupa ei" [Raymond Ruyer]
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

alex wrote:Se poate folosi inegalitatea lui Cebasev...apoi teorema de medie si faptul ca functia e crescatoare...
Da, Alexandra, asa ma gandeam si eu. Chiar am vorbit de solutia asta cu Alin si Beni. Ma rog a mea este un pic diferita, anume:

Solutie.

Din inegalitatea Cauchy-Schwarz, avem \( \int_0^1f^{2}(x)dx\geq\left(\int_0^1f(x)dx\right)^2(*) \). Astfel, ne ramane sa demonstram ca

\( f(0)\leq\int_0^1f(x)dx \). Pe de alta parte, din teorema de medie, avem ca exista \( c\in (0,1) \) astfel incat \( f(c)=\int_0^1f(x)dx \), de unde folosind faptul ca \( f \) este crescatoare, avem concluzia problemei noastre. \( \qed \)

Observatie.

In cazul (*), inegalitatea Cauchy-Schwarz si Cebasev coincid. :)
Acest lucru se vede imediat, pentru ca aplicam Cebasev functiilor \( f \) si \( f \) care e acelasi lucru. Intr-adevar, avem
\( \int_0^1f^{2}(x)dx=\int_0^1f(x)\cdot f(x)dx\geq\int_0^1f(x)dx\cdot\int_0^1f(x)dx=\left(\int_0^1f(x)dx\right)^2 \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Analiza matematica”