Fie \( f:[0, \infty) \rightarrow (0, \infty) \) o functie continua si crescatoare. Aratati ca :
\( f(0) \int_{0}^{1}f(x)dx \leq \int_{0}^{1}f^{2}(x) dx \)
Constantin Buse
Traian Lalescu 2008, problema 3
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- bogdanl_yex
- Pitagora
- Posts: 91
- Joined: Thu Jan 31, 2008 9:58 pm
- Location: Bucuresti
Traian Lalescu 2008, problema 3
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
- Alin Galatan
- Site Admin
- Posts: 247
- Joined: Tue Sep 25, 2007 9:24 pm
- Location: Bucuresti/Timisoara/Moldova Noua
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Da, Alexandra, asa ma gandeam si eu. Chiar am vorbit de solutia asta cu Alin si Beni. Ma rog a mea este un pic diferita, anume:alex wrote:Se poate folosi inegalitatea lui Cebasev...apoi teorema de medie si faptul ca functia e crescatoare...
Solutie.
Din inegalitatea Cauchy-Schwarz, avem \( \int_0^1f^{2}(x)dx\geq\left(\int_0^1f(x)dx\right)^2(*) \). Astfel, ne ramane sa demonstram ca
\( f(0)\leq\int_0^1f(x)dx \). Pe de alta parte, din teorema de medie, avem ca exista \( c\in (0,1) \) astfel incat \( f(c)=\int_0^1f(x)dx \), de unde folosind faptul ca \( f \) este crescatoare, avem concluzia problemei noastre. \( \qed \)
Observatie.
In cazul (*), inegalitatea Cauchy-Schwarz si Cebasev coincid.
Acest lucru se vede imediat, pentru ca aplicam Cebasev functiilor \( f \) si \( f \) care e acelasi lucru. Intr-adevar, avem
\( \int_0^1f^{2}(x)dx=\int_0^1f(x)\cdot f(x)dx\geq\int_0^1f(x)dx\cdot\int_0^1f(x)dx=\left(\int_0^1f(x)dx\right)^2 \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.