Daca functia \( f:[0,1]\to\mathbb{R} \) este continua, sa se arate ca
\( \int_0^1f^{2}(x^{2})dx\geq\frac{3}{4}\left(\int_0^1f(x)dx\right)^{2} \).
Laurentiu Panaitopol, Olimpiada Judeteana Giurgiu, 1991
Inegalitate integrala cu o functie continua
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Inegalitate integrala cu o functie continua
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
-
Edgar Dobriban
- Euclid
- Posts: 10
- Joined: Sat Apr 05, 2008 12:47 pm
Din inegalitatea Cauchy avem \( \int_0^1f^{2}(x^{2})dx\int_0^1(2x)^2dx\geq\left(\int_0^1f(x^2)2xdx\right)^{2} \).Cezar Lupu wrote:Daca functia \( f:[0,1]\to\mathbb{R} \) este continua, sa se arate ca
\( \int_0^1f^{2}(x^{2})dx\geq\frac{3}{4}\left(\int_0^1f(x)dx\right)^{2} \).
Laurentiu Panaitopol, Olimpiada Judeteana Giurgiu, 1991
Dar \( \int_0^1f(x^2)2xdx=\int_0^1f(x)dx \) si \( \int_0^1(2x)^2dx=4/3 \) de unde rezulta concluzia.