2n+1 patrat perfect

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

2n+1 patrat perfect

Post by Radu Titiu »

Daca \( 2n+1 \) este patrat perfect atunci aratati ca \( n+1 \) se poate scrie ca o suma de doua patrate perfecte , iar \( 3n+1 \) se poate scrie ca o suma de trei patrate perfecte.
A mathematician is a machine for turning coffee into theorems.
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

\( 2n+1=a^2 \)

evident a - impar .
Fie k astfel incat \( a=2k+1 \)

\( 2n+1=(k+k+1)^2 \)
de unde \( 2n=2k(2k+2) \) adica \( n=2k(k+1) \)

\( n+1=2n+1-n=(k+k+1)^2-2k(k+1)=k^2+2k(k+1)+(k+1)^2-2k(k+1)=k^2+(k+1)^2 \)


\( 3n+1 \) chiar cred ca nu se poate scrie ca suma de 3 patrate perfecte... in cazul in care voiai sa scri \( 3n+2 \) atunci \( 3n+2=a^2+k^2+(k+1)^2 \)
Post Reply

Return to “Clasa a VII-a”