Polinom cu radacinile de modul 1

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Wizzy
Euclid
Posts: 25
Joined: Sat Sep 29, 2007 11:20 pm
Location: Craiova

Polinom cu radacinile de modul 1

Post by Wizzy »

Fie \( z \in \mathbb{C} \) astfel incat \( 11z^{10}+10iz^9+10iz-11=0 \). Atunci aratati ca \( |z|=1. \)
Vrajitoarea Andrei
User avatar
heman
Euclid
Posts: 39
Joined: Fri Sep 28, 2007 7:36 pm

Post by heman »

\( z^9(10i+11z)=(11-10iz) \Rightarrow {|z|}^9|10i+11z|=|11-10iz| \)

Presupunem ca \( |10i+11z|>|11-10iz| \), celalalt caz tratandu-se analog.

\( |10i+11z|>|11-10iz| \Rightarrow (10i+11z)(11 \bar{z}-10i)>(11-10iz)(11+10i \bar{z}) \Rightarrow 21{|z|}^2>21 \Rightarrow |z|>1 \Rightarrow
{|z|}^9|10i+11z|>|11-10iz| \)
imposibil.
Post Reply

Return to “Clasa a X-a”