Fie \( f:[0,1]\to [0,\infty) \) o functie integrabila. Sa se arate ca
\( \int_0^1f(x)\cdot\int_0^1x^{3}f(x)dx\geq\int_0^1xf(x)dx\cdot\int_0^1x^{2}f(x)dx \).
Cezar Lupu & Mihai Piticari, Mathematical Reflections 2007
Observatie.
Desi aparent infonesiva, inegalitatea de mai sus chiar spune ceva:
In limbaj de statistica, daca \( X \) reprezinta o variabila aleatoare a repartitiei Pearson, atunci avem urmatoarea formula pentru media repartitiei mentionate mai sus:
\( M(X^{k})=\int_0^1x^{k}f(x)dx\forall k\geq 1 \),
iar daca \( k=0 \), atunci \( f \) este densitate de repartitie si in consecinta \( \int_0^1f(x)dx=1 \). Astfel, inegalitatea de mai sus (care are o rezolvare cu totul elementara) s-ar traduce in limbaj de repartitie Pearson astfel:
\( M(X)\cdot M(X^{2})\leq M(X^{3}) \).
Inegalitate integrala tot in gen Muirhead
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Inegalitate integrala tot in gen Muirhead
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
\( g(x,y)=f(x)f(y)(x+y)(x-y)^2\geq 0 \) on \( K=[0;1]^2 \)
\( \int\int_{K}(x^3f(x)f(y)+y^3f(x)f(y)-xy^2f(x)f(y)-x^2yf(x)f(y))dxdx\geq 0 \)
with Fubini
\( (\int_{0}^{1}x^3f(x)dx)(\int_{0}^{1}f(y)dy)+(\int_{0}^{1}f(x)dx)(\int_{0}^{1}y^3f(y)dy)\geq (\int_{0}^{1}xf(x)dx)(\int_{0}^{1}y^2f(y)dy)+(\int_{0}^{1}x^2f(x)dx)(\int_{0}^{1}yf(y)dy) \)
--------------------------------------------------------------------
In the title " Muirhead "
How use Muirhead inequality to write another proof ?
\( \int\int_{K}(x^3f(x)f(y)+y^3f(x)f(y)-xy^2f(x)f(y)-x^2yf(x)f(y))dxdx\geq 0 \)
with Fubini
\( (\int_{0}^{1}x^3f(x)dx)(\int_{0}^{1}f(y)dy)+(\int_{0}^{1}f(x)dx)(\int_{0}^{1}y^3f(y)dy)\geq (\int_{0}^{1}xf(x)dx)(\int_{0}^{1}y^2f(y)dy)+(\int_{0}^{1}x^2f(x)dx)(\int_{0}^{1}yf(y)dy) \)
--------------------------------------------------------------------
In the title " Muirhead "
How use Muirhead inequality to write another proof ?
Last edited by o.m. on Mon May 12, 2008 9:41 pm, edited 1 time in total.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
- Dragos Fratila
- Newton
- Posts: 313
- Joined: Thu Oct 04, 2007 10:04 pm
Here another way with Riemann sums: expand g(x,y), choose for \( x=k/n \), \( y=q/m \) with k,q integers from 1 to n and 1 to m.
\( (\frac{1}{n}\sum_{k=1}^{n}\frac{k^3}{n^3}f(k/n))(\frac{1}{m}\sum_{q=1}^{m}f(q/m))+(\frac{1}{n}\sum_{k=1}^{n}f(k/n))(\frac{1}{m}\sum_{q=1}^{m}\frac{q^3}{m^3}f(q/m))- \)
\( -(\frac{1}{n}\sum_{k=1}^{n}\frac{k}{n}f(k/n))(\frac{1}{m}\sum_{q=1}^{m}\frac{q^2}{m^2}f(q/m))-(\frac{1}{n}\sum_{k=1}^{n}\frac{k^2}{n^2}f(k/n))(\frac{1}{n}\sum_{q=1}^{m}\frac{q}{m}f(q/m))\geq 0 \)
Take the limit when n tends to +oo
Take the limit when m tends to +oo
you will have the inequality
\( (\frac{1}{n}\sum_{k=1}^{n}\frac{k^3}{n^3}f(k/n))(\frac{1}{m}\sum_{q=1}^{m}f(q/m))+(\frac{1}{n}\sum_{k=1}^{n}f(k/n))(\frac{1}{m}\sum_{q=1}^{m}\frac{q^3}{m^3}f(q/m))- \)
\( -(\frac{1}{n}\sum_{k=1}^{n}\frac{k}{n}f(k/n))(\frac{1}{m}\sum_{q=1}^{m}\frac{q^2}{m^2}f(q/m))-(\frac{1}{n}\sum_{k=1}^{n}\frac{k^2}{n^2}f(k/n))(\frac{1}{n}\sum_{q=1}^{m}\frac{q}{m}f(q/m))\geq 0 \)
Take the limit when n tends to +oo
Take the limit when m tends to +oo
you will have the inequality
- Vlad Matei
- Pitagora
- Posts: 58
- Joined: Wed Sep 26, 2007 6:44 pm
- Location: Bucuresti
Uneori doar doua Cauchy-uri sunt de ajuns.
Primul \( \displaystyle\left(\int_{0}^{1}f(x)dx\right)\left(\int_{0}^{1}x^{2}f(x)dx\right)\geq
\left(\int_{0}^{1}xf(x)dx\right)^{2} \).
Al doilea \( \displaystyle\left(\int_{0}^{1}x^{3}f(x)dx\right)\left(\int_{0}^{1}xf(x)dx\right)\geq\left(\int_{0}^{1}x^{2}f(x)dx\right)^{2} \)
Le inmultim si am terminat.
Primul \( \displaystyle\left(\int_{0}^{1}f(x)dx\right)\left(\int_{0}^{1}x^{2}f(x)dx\right)\geq
\left(\int_{0}^{1}xf(x)dx\right)^{2} \).
Al doilea \( \displaystyle\left(\int_{0}^{1}x^{3}f(x)dx\right)\left(\int_{0}^{1}xf(x)dx\right)\geq\left(\int_{0}^{1}x^{2}f(x)dx\right)^{2} \)
Le inmultim si am terminat.