Let f be a continous function from \( [0;1] \) to \( [e;+\infty) \).
Prove that
\( (\int_{0}^{1}f)(\int_{0}^{1}f\ln f)\leq (\int_{0}^{1}f^2)(\int_{0}^{1}\ln f) \)
(From my notes.)
Integral inequality with ln
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Incercam sa demonstram inegalitatea
\( \sum_{k=1}^nx_k\sum_{k=1}^nx_k\ln x_k\leq \sum_{k=1}^nx_k^2\sum_{k=1}^n\ln x_k \), pentru orice \( n\geq 2 \) si \( x_1,...,x_n \in [e,\infty) \).
Daca reusim o aplicam pentru \( x_k=f(\frac{k}{n}) \), impartim cu \( n^{2} \) si pentru \( n\to \infty \), obtinem inegalitatea ceruta.
Pentru \( n=2 \) avem \( (x+y)(x\ln x+y\ln y)\leq (x^2+y^2)(\ln x+\ln y)\Leftrightarrow x^2\ln y+y^2\ln x-xy(\ln x+\ln y)\geq 0\Leftrightarrow 0\leq (x-y)(\frac{\ln y}{y}-\frac{\ln x}{x}) \).
Avem \( (\frac{\ln x}{x})^\prime=\frac{1-\ln x}{x^2}\leq 0 \) pentru \( x\geq e \). Deci functia \( \frac{\ln x}{x} \) este descrescatoare pe \( [e,\infty) \) si am terminat pentru acest caz.
Acum incercam sa demonstram prin inductie dupa \( n \) inegalitatea.
Presupunem ca \( \sum_{k=1}^nx_k\sum_{k=1}^nx_k\ln x_k\leq \sum_{k=1}^nx_k^2\sum_{k=1}^n\ln x_k \) pentru orice \( x_1,...,x_n \in [e,\infty) \).
Fie \( x_1,...,x_n,x_{n+1} \in [e,\infty) \), numerotate astfel incat \( x_{n+1} \) sa fie cel mai mare dintre ele.
Atunci \( \sum_{k=1}^{n+1}x_k\sum_{k=1}^{n+1}x_k\ln x_k- \sum_{k=1}^{n+1}x_k^2\sum_{k=1}^{n+1}\ln x_k=\sum_{k=1}^nx_k\sum_{k=1}^nx_k\ln x_k-\sum_{k=1}^nx_k^2\sum_{k=1}^n\ln x_k+\\x_{n+1}\ln x_{n+1}\sum_{k=1}^nx_k-x_{n+1}^2\sum_{k=1}^n\ln x_{k}+x_{n+1}\sum_{k=1}^nx_{k}\ln x_{k}-\ln x_{n+1}\sum_{k=1}^nx_k^2\leq 0 \) pentru ca:
\( \sum_{k=1}^nx_k\sum_{k=1}^nx_k\ln x_k- \sum_{k=1}^nx_k^2\sum_{k=1}^n\ln x_k\leq 0 \) din presupunerea de inductie.
\( x_{n+1}\ln x_{n+1}\sum_{k=1}^nx_k-x_{n+1}^2\sum_{k=1}^n\ln x_{k}=\sum_{k=1}^{n}x_{n+1}^2x_k(\frac{\ln x_{n+1}}{x_{n+1}}-\frac{\ln x_k}{x_k})\leq 0 \), din faptul ca \( \frac{\ln x}{x} \) e descrescatoare pentru \( x\geq e \).
\( x_{n+1}\sum_{k=1}^nx_{k}\ln x_{k}-\ln x_{n+1}\sum_{k=1}^nx_k^2=\sum_{k=1}^nx_{n+1}x_k^2(\frac{\ln x_{n+1}}{x_{n+1}}-\frac{\ln x_k}{x_k})\leq 0 \) din faptul ca \( \frac{\ln x}{x} \) e descrescatoare pentru \( x\geq e \).
Deci am terminat....
(poate ca daca stiam ca scriu atata nici nu ma apucam...
)
\( \sum_{k=1}^nx_k\sum_{k=1}^nx_k\ln x_k\leq \sum_{k=1}^nx_k^2\sum_{k=1}^n\ln x_k \), pentru orice \( n\geq 2 \) si \( x_1,...,x_n \in [e,\infty) \).
Daca reusim o aplicam pentru \( x_k=f(\frac{k}{n}) \), impartim cu \( n^{2} \) si pentru \( n\to \infty \), obtinem inegalitatea ceruta.
Pentru \( n=2 \) avem \( (x+y)(x\ln x+y\ln y)\leq (x^2+y^2)(\ln x+\ln y)\Leftrightarrow x^2\ln y+y^2\ln x-xy(\ln x+\ln y)\geq 0\Leftrightarrow 0\leq (x-y)(\frac{\ln y}{y}-\frac{\ln x}{x}) \).
Avem \( (\frac{\ln x}{x})^\prime=\frac{1-\ln x}{x^2}\leq 0 \) pentru \( x\geq e \). Deci functia \( \frac{\ln x}{x} \) este descrescatoare pe \( [e,\infty) \) si am terminat pentru acest caz.
Acum incercam sa demonstram prin inductie dupa \( n \) inegalitatea.
Presupunem ca \( \sum_{k=1}^nx_k\sum_{k=1}^nx_k\ln x_k\leq \sum_{k=1}^nx_k^2\sum_{k=1}^n\ln x_k \) pentru orice \( x_1,...,x_n \in [e,\infty) \).
Fie \( x_1,...,x_n,x_{n+1} \in [e,\infty) \), numerotate astfel incat \( x_{n+1} \) sa fie cel mai mare dintre ele.
Atunci \( \sum_{k=1}^{n+1}x_k\sum_{k=1}^{n+1}x_k\ln x_k- \sum_{k=1}^{n+1}x_k^2\sum_{k=1}^{n+1}\ln x_k=\sum_{k=1}^nx_k\sum_{k=1}^nx_k\ln x_k-\sum_{k=1}^nx_k^2\sum_{k=1}^n\ln x_k+\\x_{n+1}\ln x_{n+1}\sum_{k=1}^nx_k-x_{n+1}^2\sum_{k=1}^n\ln x_{k}+x_{n+1}\sum_{k=1}^nx_{k}\ln x_{k}-\ln x_{n+1}\sum_{k=1}^nx_k^2\leq 0 \) pentru ca:
\( \sum_{k=1}^nx_k\sum_{k=1}^nx_k\ln x_k- \sum_{k=1}^nx_k^2\sum_{k=1}^n\ln x_k\leq 0 \) din presupunerea de inductie.
\( x_{n+1}\ln x_{n+1}\sum_{k=1}^nx_k-x_{n+1}^2\sum_{k=1}^n\ln x_{k}=\sum_{k=1}^{n}x_{n+1}^2x_k(\frac{\ln x_{n+1}}{x_{n+1}}-\frac{\ln x_k}{x_k})\leq 0 \), din faptul ca \( \frac{\ln x}{x} \) e descrescatoare pentru \( x\geq e \).
\( x_{n+1}\sum_{k=1}^nx_{k}\ln x_{k}-\ln x_{n+1}\sum_{k=1}^nx_k^2=\sum_{k=1}^nx_{n+1}x_k^2(\frac{\ln x_{n+1}}{x_{n+1}}-\frac{\ln x_k}{x_k})\leq 0 \) din faptul ca \( \frac{\ln x}{x} \) e descrescatoare pentru \( x\geq e \).
Deci am terminat....
(poate ca daca stiam ca scriu atata nici nu ma apucam...