Inegalitatea 1, conditionata, cu abc=1 (Crux)

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Inegalitatea 1, conditionata, cu abc=1 (Crux)

Post by Cezar Lupu »

Fie \( a, b, c \) trei numere trict pozitive astfel incat \( abc=1 \). Sa se arate ca \( \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\geq a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Sabin Salajan
Euclid
Posts: 29
Joined: Tue Apr 22, 2008 11:12 am
Location: Satu Mare

Post by Sabin Salajan »

Deconditionam: \( a=\frac{x}{y} \);\( b=\frac{z}{x} \);\( c=\frac{y}{z} \)

Inegalitatea devine echivalenta cu: \( \sum \frac{x^2}{yz}+3\geq\sum \frac{x}{y}+\sum\frac{y}{x} \)
Prin aducere la acelasi numitor (anume xyz, care se simplifica fiind pozitiv) devine:\( \sum x^3+3xyz\geq\sum{x^2}(y+z) \)
care este inegalitatea lui Schur pt n=1 (sau se reduce imediat la cunoscuta \( (x-y+z)(x+y-z)(-x+y+z)\leq xyz \)).
Post Reply

Return to “Inegalitati”