Concursul 'Marian Tarina' 2008 pb 4

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Concursul 'Marian Tarina' 2008 pb 4

Post by Radu Titiu »

Fie \( f: (0,\infty) \to [0,\infty) \) o functie marginita. Daca
\( \lim_{x \to 0} \left( f(x) -\frac{1}{2}\sqrt{f \left( \frac{x}{2}\right)}\right)=0 \)

\( \lim_{x \to 0} \left( f(x) -2f^2(2x)\right)=0 \),

atunci \( \lim_{x \to 0}f(x)=0 \).
A mathematician is a machine for turning coffee into theorems.
Bogdan Cebere
Thales
Posts: 145
Joined: Sun Nov 04, 2007 1:04 pm

Post by Bogdan Cebere »

Notam \( \frac{x}{2} \) cu t si aducem 2 la numarator, adica \( f(x) -\frac{1}{2}\sqrt{f \left( \frac{x}{2}\right)}= 2 f(2t) -\sqrt{f ( {t})} \). Inmultim relatia cu \( 2 f(2t) +\sqrt{f ( {t})} \) si facem observatiile:
* \( f \) nu poate tinde la infinit deoarece ar contrazice faptul ca e marginita.
* daca \( 2 f(2t) +\sqrt{f ( {t})}=0 \), prin trecere la limita obtinem ca \( \lim_{t \to 0}f \left( t)=0 \), deoarece functia este pozitiva.
* daca \( 2 f(2t) + \sqrt{f ( {t})} \neq 0 \), atunci prin inmultirea cu \( 2 f(2t) -\sqrt{f ({t})} \) obtinem ca \( \lim_{t \to 0} \left(4 f^2(2t) -f(t)\right)=0 \). Combinand cu relatia 2 din ipoteza obtinem ca \( \lim_{t \to 0}f(t)=0 \).
Post Reply

Return to “Analiza matematica”