Sa se determine \( n \in \mathbb{N}^* \) astfel incat \( \frac{{2\sqrt n - 5\sqrt 3 }}{{\sqrt 3 + \sqrt n }} \in \mathbb{Z} \).
Concursul Marian Tarina, 2006, Mariana Ursu si Gheorghe Lobont
"Marian Tarina", 2006
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
"Marian Tarina", 2006
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Problema foarte cunoscuta.... Asemenea problema cu radicali a fost la Olimpiada Municipala Chisinau in clasa 7.
\( \frac{2\sqrt{n}-5\sqrt{3}}{\sqrt{3}+\sqrt{n}}=\frac{2(\sqrt{n}+\sqrt{3})-7\sqrt{3}}{\sqrt{3}+\sqrt{n}}= 2-\frac{7\sqrt{3}}{\sqrt{3}+\sqrt{n}}. \)
Deci \( \frac{7\sqrt{3}}{\sqrt{3}+\sqrt{n}}\in \mathbb{Z} \).
De unde \( \sqrt{3}+\sqrt{n}\in \{\sqrt{3} ; 7\sqrt{3}} \), deci \( \sqrt{n}\in \{0;6\sqrt{3}\} \) sau \( n\in\{0; 108} \).
\( \frac{2\sqrt{n}-5\sqrt{3}}{\sqrt{3}+\sqrt{n}}=\frac{2(\sqrt{n}+\sqrt{3})-7\sqrt{3}}{\sqrt{3}+\sqrt{n}}= 2-\frac{7\sqrt{3}}{\sqrt{3}+\sqrt{n}}. \)
Deci \( \frac{7\sqrt{3}}{\sqrt{3}+\sqrt{n}}\in \mathbb{Z} \).
De unde \( \sqrt{3}+\sqrt{n}\in \{\sqrt{3} ; 7\sqrt{3}} \), deci \( \sqrt{n}\in \{0;6\sqrt{3}\} \) sau \( n\in\{0; 108} \).
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact: