Ecuatie logaritmica

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
Theodor Munteanu
Pitagora
Posts: 98
Joined: Tue May 06, 2008 5:46 pm
Location: Sighetu Marmatiei

Ecuatie logaritmica

Post by Theodor Munteanu »

\( \log_{2006}(x-1)+\log_{2007}(x^2-1)+\log_{2008}(x^3-1)=2-\log_{10}(\frac{x^9-12}{5}) \)
mihai miculita
Pitagora
Posts: 93
Joined: Mon Nov 12, 2007 7:51 pm
Location: Oradea, Romania

Post by mihai miculita »

1). Domeniul de definitie al ecuatiei este: \( D=(\sqrt[9]{12};+\infty) \).
2). Notand cu: \( f(x)=log_{2006}(x-1)+log_{2007}(x^2-1)+log_{2008}(x^3-1) \) si cu: \( g(x)=2-lg{\frac{x^9-12}{5}} \), ecuatia de rezolvat poate fi pusa sub forma: \( f(x)=g(x) \).
3). Cum \( f(x) \) este strict crescatoare si \( g(x) \) strict descrescatoare pe \( D \), ecuatia \( f(x)=g(x) \) are o solutie unica!
Se observa insa cu usurinta faptul ca \( x=2 \) este solutie a ecuatiei, intrucat avem: \( f(2)=g(2)=0 \).
Asa ca unica solutie este \( x=2 \).
Last edited by mihai miculita on Sun Nov 09, 2008 4:50 pm, edited 1 time in total.
Post Reply

Return to “Clasa a X-a”