Se considera numerele complexe \( z_1,z_2,z_3 \). Daca \( z=\overline{z_1}z_2+\overline{z_2}z_3+\overline{z_3}z_1 \), aratati ca:
\( Re(z)-\sqrt{3}\cdot Im(z)\leq |z_1|^2+|z_2|^2+|z_3|^2 \)
O problema by Andrei Vrajitoarea
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- BogdanCNFB
- Thales
- Posts: 121
- Joined: Wed May 07, 2008 4:29 pm
- Location: Craiova
- Tudor Micu
- Pitagora
- Posts: 51
- Joined: Thu Mar 06, 2008 9:39 pm
- Location: Cluj-Napoca, Romania
Notam \( z_j=r_j(cos a_j+i sin a_j) \), \( j=1,2,3 \)
Prin inlocuire inegalitatea de demonstrat revine la:
\( r_1r_2[cos(a_2-a_1)-\sqrt{3}sin(a_2-a_1)]+r_2r_3[cos(a_3-a_2)-\sqrt{3}sin(a_3-a_2)]+r_3r_1[cos(a_1-a_3)-\sqrt{3}sin(a_1-a_3)]\leq r_1^2+r_2^2+r_3^2 \)
Fie punctele \( A_i(z_i) \), \( i=1,2,3 \)
Din teorema cosinusului in triunghiurile \( OA_1A_2 \), \( OA_2A_3 \), \( OA_3A_1 \) avem:
\( 2r_1r_2cos(a_2-a_1)=2A_1A_2^2-r_1^2-r_2^2 \)
\( 2r_2r_3cos(a_3-a_2)=2A_2A_3^2-r_2^2-r_3^2 \)
\( 2r_3r_2cos(a_1-a_3)=2A_3A_1^2-r_3^2-r_1^2 \)
Avem de asemenea:
\( \sqrt{3}r_1r_2 sin(a_2-a_1)=-S_{OA_1A_2} \)
\( \sqrt{3}r_2r_3 sin(a_3-a_2)=S_{OA_2A_3} \)
\( \sqrt{3}r_3r_1 sin(a_1-a_3)=-S_{OA_3A_1} \)
Ramane deci de demonstrat ca \( a^2+b^2+c^2\geq 4\sqrt{3} S_{ABC} \) unde \( a,b,c \) sunt laturile triunghiului ABC.
Scriem \( a=x+y \) \( b=y+z \) \( c=z+x \) si ajungem ca trebuie sa demonstram ca:
\( x^2+y^2+z^2+xy+yz+zx\geq 2\sqrt{3}\sqrt{(x+y+z)xyz} \)
Avem din inegalitatea mediilor:
\( \sqrt{3xyz(x+y+z)}=\sqrt{3xy(xz+yz+z^2)}\leq\frac{3xy+yz+zx+z^2}{2} \)
\( \sqrt{3xyz(x+y+z)}=\sqrt{3yz(x^2+xy+xz)}\leq\frac{3yz+xz+yx+x^2}{2} \)
\( \sqrt{3xyz(x+y+z)}=\sqrt{3zx(xy+y^2+yz)}\leq\frac{3zx+xy+yz+y^2}{2} \)
Insumand ultimele trei inegalitati obtinem:
\( \sqrt{3xyz(x+y+z)}\leq\frac{x^2+y^2+z^2+5xy+5yz+5zx}{6} \)
Ramane deci de aratat ca \( 3x^2+3y^2+3z^2+3xy+3yz+3zx\geq x^2+y^2+z^2+5xy+5yz+5zx \), echivalent cu \( 2x^2+2y^2+2z^2\geq 2xy+2yz+2zx \), care este evident
Prin inlocuire inegalitatea de demonstrat revine la:
\( r_1r_2[cos(a_2-a_1)-\sqrt{3}sin(a_2-a_1)]+r_2r_3[cos(a_3-a_2)-\sqrt{3}sin(a_3-a_2)]+r_3r_1[cos(a_1-a_3)-\sqrt{3}sin(a_1-a_3)]\leq r_1^2+r_2^2+r_3^2 \)
Fie punctele \( A_i(z_i) \), \( i=1,2,3 \)
Din teorema cosinusului in triunghiurile \( OA_1A_2 \), \( OA_2A_3 \), \( OA_3A_1 \) avem:
\( 2r_1r_2cos(a_2-a_1)=2A_1A_2^2-r_1^2-r_2^2 \)
\( 2r_2r_3cos(a_3-a_2)=2A_2A_3^2-r_2^2-r_3^2 \)
\( 2r_3r_2cos(a_1-a_3)=2A_3A_1^2-r_3^2-r_1^2 \)
Avem de asemenea:
\( \sqrt{3}r_1r_2 sin(a_2-a_1)=-S_{OA_1A_2} \)
\( \sqrt{3}r_2r_3 sin(a_3-a_2)=S_{OA_2A_3} \)
\( \sqrt{3}r_3r_1 sin(a_1-a_3)=-S_{OA_3A_1} \)
Ramane deci de demonstrat ca \( a^2+b^2+c^2\geq 4\sqrt{3} S_{ABC} \) unde \( a,b,c \) sunt laturile triunghiului ABC.
Scriem \( a=x+y \) \( b=y+z \) \( c=z+x \) si ajungem ca trebuie sa demonstram ca:
\( x^2+y^2+z^2+xy+yz+zx\geq 2\sqrt{3}\sqrt{(x+y+z)xyz} \)
Avem din inegalitatea mediilor:
\( \sqrt{3xyz(x+y+z)}=\sqrt{3xy(xz+yz+z^2)}\leq\frac{3xy+yz+zx+z^2}{2} \)
\( \sqrt{3xyz(x+y+z)}=\sqrt{3yz(x^2+xy+xz)}\leq\frac{3yz+xz+yx+x^2}{2} \)
\( \sqrt{3xyz(x+y+z)}=\sqrt{3zx(xy+y^2+yz)}\leq\frac{3zx+xy+yz+y^2}{2} \)
Insumand ultimele trei inegalitati obtinem:
\( \sqrt{3xyz(x+y+z)}\leq\frac{x^2+y^2+z^2+5xy+5yz+5zx}{6} \)
Ramane deci de aratat ca \( 3x^2+3y^2+3z^2+3xy+3yz+3zx\geq x^2+y^2+z^2+5xy+5yz+5zx \), echivalent cu \( 2x^2+2y^2+2z^2\geq 2xy+2yz+2zx \), care este evident
Tudor Adrian Micu
Universitatea "Babes Bolyai" Cluj-Napoca
Facultatea de Matematica si Informatica
Universitatea "Babes Bolyai" Cluj-Napoca
Facultatea de Matematica si Informatica
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Studiu critic.
Este evident ca \( -x\le |x| \) . Era oare nevoie de "frunza" asta care mai mult deruteaza elevul ?! Enuntul unei probleme trebuie sa fie esentializat,
adica fara adaosuri nesemnificative (frunze care imbraca un buchet de trandafiri). Mai exact, enuntul problemei propuse ar trebui sa arate astfel :
este data de relatia (retineti !) \( \overline {\underline {\left\|\ S=\frac 14\cdot\left|z-\overline z\right|=\frac 12\cdot\left|Im(z)\right|\mathrm {\ ,\ unde\ }z=\overline{z_1}z_2+\overline{z_2}z_3+\overline{z_3}z_1\ \right\|}}\ \ (*) \) .
Acum "traducem" in limbajul numerelor complexe cunoscuta inegalitate Weitzenbock \( \underline {\overline {\left\|\ a^2+b^2+c^2 \ge 4\sqrt 3\cdot S\ \right\|}} \)
(vezi http://en.wikipedia.org/wiki/Weitzenb%C ... inequality ) :
\( |z_1-z_2|^2+|z_2-z_3|^2+|z_3-z_1|^2\ge 2\sqrt 3\cdot |Im(z)| \) \( \Longleftrightarrow \) \( 2\sum|z_k|^2-z-\overline z\ge 2\sqrt 3\cdot\left|Im(z)\right| \) \( \Longleftrightarrow \)
\( 2\sum|z_k|^2-2\cdot Re(z)\ge 2\sqrt 3\cdot\left|Im(z)\right| \) \( \Longleftrightarrow \) \( Re(z)+\sqrt{3}\cdot \left|Im(z)\right|\le |z_1|^2+|z_2|^2+|z_3|^2 \) .
Am folosit faptul ca \( |z|^2=z\cdot\overline {z} \) si in particular \( |z_1-z_2|^2=(z_1-z_2)(\overline {z_1}-\overline {z_2})=|z_1|^2+|z_2|^2-z_1\overline {z_2}-\overline {z_1}z_2 \) etc.
Comentariu. S-au folosit exprimarea ariei unui triunghi cu ajutorul afixelor varfurilor acestuia si o inegalitate remarcabila.
Problema propusa de fapt este o "traducere" si nu o "compozitie" pentru cel care cunoaste semnificatia geometrica a lui
\( z=\overline{z_1}z_2+\overline{z_2}z_3+\overline{z_3}z_1 \) in aplicarea numerelor complexe in geometrie. De exemplu, punctele \( A_k(z_k) \) , \( k\in\overline {1,3} \)
sunt coliniare daca si numai daca \( Im(z)=0 \) . Elegant exprimat (clasa a XI - a) , \( A_3\in A_1A_2 \ \Longleftrightarrow\ \left|\begin{array}{ccc}
z_1 & \overline {z_1} & 1\\\
z_2 & \overline {z_2} & 1\\\
z_3 & \overline {z_3} & 1\end{array}\right|=0 \) .
Invitatie. Incercati sa compuneti probleme in mod asemanator : "traduceti" in limbajul numerelor complexe alte
inegalitati geometrice cunoscute astfel incat "produsul" sa fie agreabil, adica sa arate frumos. De exemplu,
inegalitatea Hadwiger-Finsler \( \underline {\overline {\left\|\ a^2+b^2+c^2\ge4\sqrt 3\cdot S+(a-b)^2+(b-c)^2+(c-a)^2\ \right\|}} \) care este o extindere
a inegalitatii Weitzenbock. Veti obtine o extindere a inegalitatii propuse. Poate are si aspect frumos. Incercati !
Este un exercitiu foarte bun pentru insusirea aplicarii numerelor complexe in geometrie.
Un exercitiu usor (clasa a XI - a). \( z_k=x_k+i\cdot y_k\ ,\ k\in\overline {1,3}\ \Longrightarrow\ \mathrm {mod} \left|\begin{array}{ccc}
x_1 & y_1 & 1\\\
x_2 & y_2 & 1\\\
x_3 & y_3 & 1\end{array}\right|=\frac 12\cdot\mathrm {mod}\left|\begin{array}{ccc}
z_1 & \overline {z_1} & 1\\\
z_2 & \overline {z_2} & 1\\\
z_3 & \overline {z_3} & 1\end{array}\right|\ . \)
Obtineti astfel demostratia formulei \( (*) \) a ariei unui triunghi cu numere complexe (afixele varfurilor acestuia).
Este evident ca \( -x\le |x| \) . Era oare nevoie de "frunza" asta care mai mult deruteaza elevul ?! Enuntul unei probleme trebuie sa fie esentializat,
adica fara adaosuri nesemnificative (frunze care imbraca un buchet de trandafiri). Mai exact, enuntul problemei propuse ar trebui sa arate astfel :
Demonstratie. Se stie sau se demonstreaza usor ca aria \( S \) a triunghiului \( A_1A_2A_3 \) , unde \( A_k(z_k) \) , \( k\in\overline {1,3} \)BogdanCNFB wrote:\( \overline {\underline {\left\|\ \begin{array}{c}
\{z_1,z_2,z_3\}\subset\mathbb C\\\\
z=\overline{z_1}z_2+\overline{z_2}z_3+\overline{z_3}z_1\end{array}\ \right\|}}\ \Longleftrightarrow\ \overline {\underline {\left\|\ Re(z)+\sqrt{3}\cdot \left|Im(z)\right|\le |z_1|^2+|z_2|^2+|z_3|^2\ \right\|}} \)
este data de relatia (retineti !) \( \overline {\underline {\left\|\ S=\frac 14\cdot\left|z-\overline z\right|=\frac 12\cdot\left|Im(z)\right|\mathrm {\ ,\ unde\ }z=\overline{z_1}z_2+\overline{z_2}z_3+\overline{z_3}z_1\ \right\|}}\ \ (*) \) .
Acum "traducem" in limbajul numerelor complexe cunoscuta inegalitate Weitzenbock \( \underline {\overline {\left\|\ a^2+b^2+c^2 \ge 4\sqrt 3\cdot S\ \right\|}} \)
(vezi http://en.wikipedia.org/wiki/Weitzenb%C ... inequality ) :
\( |z_1-z_2|^2+|z_2-z_3|^2+|z_3-z_1|^2\ge 2\sqrt 3\cdot |Im(z)| \) \( \Longleftrightarrow \) \( 2\sum|z_k|^2-z-\overline z\ge 2\sqrt 3\cdot\left|Im(z)\right| \) \( \Longleftrightarrow \)
\( 2\sum|z_k|^2-2\cdot Re(z)\ge 2\sqrt 3\cdot\left|Im(z)\right| \) \( \Longleftrightarrow \) \( Re(z)+\sqrt{3}\cdot \left|Im(z)\right|\le |z_1|^2+|z_2|^2+|z_3|^2 \) .
Am folosit faptul ca \( |z|^2=z\cdot\overline {z} \) si in particular \( |z_1-z_2|^2=(z_1-z_2)(\overline {z_1}-\overline {z_2})=|z_1|^2+|z_2|^2-z_1\overline {z_2}-\overline {z_1}z_2 \) etc.
Comentariu. S-au folosit exprimarea ariei unui triunghi cu ajutorul afixelor varfurilor acestuia si o inegalitate remarcabila.
Problema propusa de fapt este o "traducere" si nu o "compozitie" pentru cel care cunoaste semnificatia geometrica a lui
\( z=\overline{z_1}z_2+\overline{z_2}z_3+\overline{z_3}z_1 \) in aplicarea numerelor complexe in geometrie. De exemplu, punctele \( A_k(z_k) \) , \( k\in\overline {1,3} \)
sunt coliniare daca si numai daca \( Im(z)=0 \) . Elegant exprimat (clasa a XI - a) , \( A_3\in A_1A_2 \ \Longleftrightarrow\ \left|\begin{array}{ccc}
z_1 & \overline {z_1} & 1\\\
z_2 & \overline {z_2} & 1\\\
z_3 & \overline {z_3} & 1\end{array}\right|=0 \) .
Invitatie. Incercati sa compuneti probleme in mod asemanator : "traduceti" in limbajul numerelor complexe alte
inegalitati geometrice cunoscute astfel incat "produsul" sa fie agreabil, adica sa arate frumos. De exemplu,
inegalitatea Hadwiger-Finsler \( \underline {\overline {\left\|\ a^2+b^2+c^2\ge4\sqrt 3\cdot S+(a-b)^2+(b-c)^2+(c-a)^2\ \right\|}} \) care este o extindere
a inegalitatii Weitzenbock. Veti obtine o extindere a inegalitatii propuse. Poate are si aspect frumos. Incercati !
Este un exercitiu foarte bun pentru insusirea aplicarii numerelor complexe in geometrie.
Un exercitiu usor (clasa a XI - a). \( z_k=x_k+i\cdot y_k\ ,\ k\in\overline {1,3}\ \Longrightarrow\ \mathrm {mod} \left|\begin{array}{ccc}
x_1 & y_1 & 1\\\
x_2 & y_2 & 1\\\
x_3 & y_3 & 1\end{array}\right|=\frac 12\cdot\mathrm {mod}\left|\begin{array}{ccc}
z_1 & \overline {z_1} & 1\\\
z_2 & \overline {z_2} & 1\\\
z_3 & \overline {z_3} & 1\end{array}\right|\ . \)
Obtineti astfel demostratia formulei \( (*) \) a ariei unui triunghi cu numere complexe (afixele varfurilor acestuia).
- Marius Damian
- Arhimede
- Posts: 8
- Joined: Thu Sep 27, 2007 10:53 pm
- Location: Braila, Romania
Re: O problema by Andrei Vrajitoarea
Notam \( \omega = \frac{1+i\sqrt{3}}{2} \) si folosim formulele \( Re(z)=\frac{z+\overline{z}}{2} \), \( Im(z)=\frac{z-\overline{z}}{2i} \).BogdanCNFB wrote:Se considera numerele complexe \( z_1,z_2,z_3 \). Daca \( z=\overline{z_1}z_2+\overline{z_2}z_3+\overline{z_3}z_1 \), aratati ca:
\( Re(z)-\sqrt{3}\cdot Im(z)\leq |z_1|^2+|z_2|^2+|z_3|^2 \)
Inegalitatea de demonstrat se scrie echivalent \( \omega z+\overline{\omega}\overline{z}\leq |z_1|^2+|z_2|^2+|z_3|^2\Longleftrightarrow |-z_1+\omega z_2+\omega^2 z_3|^2\geq 0 \), evidenta.