(M2) Subiectul III-faza finala-Concursul de Evaluare
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
(M2) Subiectul III-faza finala-Concursul de Evaluare
Sa se calculeze \( \sum cos((\pm \frac{1}{2} \pm \frac{2}{3} \pm \frac{3}{4} \pm \cdots \pm \frac {2008}{2009}) \pi) \), unde suma se face dupa toate alegerile posibile ale semnelor + si -.
- Tudor Micu
- Pitagora
- Posts: 51
- Joined: Thu Mar 06, 2008 9:39 pm
- Location: Cluj-Napoca, Romania
Scriem \( x_i=\frac{i\pi}{i+1} \)
Grupam termenii sumei doi cate doi in felul urmator: \( \cos(x_1+a)+\cos(-x_1+a)=2 \cos x_1 \cos a \), unde a este \( \pm x_2\pm...x_n \), cu o alegere oarecare a semnelor.
Astfel \( \sum \cos(\pm x_1\pm x_2\pm...x_n) \) devine \( 2\cos x_1\sum \cos(\pm x_2\pm...x_n) \)
\( \cos x_1=\cos \frac{\pi}{2}=0 \), deci suma este 0.
Grupam termenii sumei doi cate doi in felul urmator: \( \cos(x_1+a)+\cos(-x_1+a)=2 \cos x_1 \cos a \), unde a este \( \pm x_2\pm...x_n \), cu o alegere oarecare a semnelor.
Astfel \( \sum \cos(\pm x_1\pm x_2\pm...x_n) \) devine \( 2\cos x_1\sum \cos(\pm x_2\pm...x_n) \)
\( \cos x_1=\cos \frac{\pi}{2}=0 \), deci suma este 0.
Tudor Adrian Micu
Universitatea "Babes Bolyai" Cluj-Napoca
Facultatea de Matematica si Informatica
Universitatea "Babes Bolyai" Cluj-Napoca
Facultatea de Matematica si Informatica