Integrala de la 0 la 1 din ln(1+x)/x

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Integrala de la 0 la 1 din ln(1+x)/x

Post by Cezar Lupu »

Sa se calculeze \( \int_0^1\frac{\ln(1+x)}{x}dx \).
Last edited by Cezar Lupu on Sat Oct 13, 2007 6:54 am, edited 2 times in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Alin Galatan
Site Admin
Posts: 247
Joined: Tue Sep 25, 2007 9:24 pm
Location: Bucuresti/Timisoara/Moldova Noua

Post by Alin Galatan »

Eu am reusit sa o aduc la forma \( \int_{0}^{\infty}\ln(1+e^{-x})dx=\int_{0}^{\infty}\frac{t}{1+e^t}dt \). De aici, trebuie cumva sa o aducem la functia Gamma. Ultima egalitate am obtinut-o prin parti.
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Aline, m-am cam convins. Mi-am pierdut aproape orice speranta ca integrala asta poate fi facuta evitand dezvoltarea in serie. M-am uitat mai atent la ce ajungi tu, dupa ce integrezi prin parti. De fapt, noi aici ne invartim intr-un cerc vicios, pentru ca ce ai obtinut tu la ultima integrala seamana a numere Bernoulli, \( \frac{x}{e^{x}-1}=\sum_{k=0}^{\infty}B_{k}\frac{x^k}{k!} \), iar Euler a dat si o formula pentru evaluarea lui \( \zeta(2k)=\frac{(-1)^{k-1}(2\pi)^{2k}B_{2k}}{2(2k)!} \) care dupa cum se vede este tot in functie de numerele lui Bernoulli si iar ajungem la seria pe care noi vrem sa o demonstram.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Analiza reala”