1. x,y,z nr. reale pozitive
x(y+1)+y(z+1)+z(x+1)>=6\sqrt{xyz}
2. a,b,c nr. reale pozitive a.i. a+b+c+d=1. Atunci sa se arate ca
radical din 8a+1 + radical din 8b+1 + radical din 8c +1 + radical din 8d+1<8
Doua inegalitati
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
1)
\( xy+z \geq 2\sqrt{xyz} \)
\( yz+x \geq 2\sqrt{xyz} \)
\( xz+y \geq 2\sqrt{xyz} \)
insumandu-le obtinem chiar inegalitatea din enunt
2)
Din inegalitatea Cauchy-Schwartz avem :
\( (\sum \sqrt{8a+1})^2\leq \4\left( \sum (8a+1)\right) \) de unde avem:
\( \sum \sqrt{8a+1} \leq 2 \sqrt{8(a+b+c+d)+4}=4\sqrt{3}<8 \)
\( xy+z \geq 2\sqrt{xyz} \)
\( yz+x \geq 2\sqrt{xyz} \)
\( xz+y \geq 2\sqrt{xyz} \)
insumandu-le obtinem chiar inegalitatea din enunt
2)
Din inegalitatea Cauchy-Schwartz avem :
\( (\sum \sqrt{8a+1})^2\leq \4\left( \sum (8a+1)\right) \) de unde avem:
\( \sum \sqrt{8a+1} \leq 2 \sqrt{8(a+b+c+d)+4}=4\sqrt{3}<8 \)
A mathematician is a machine for turning coffee into theorems.