Un exercitiu usurel

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Natalee
Euclid
Posts: 42
Joined: Mon Dec 10, 2007 4:13 pm

Un exercitiu usurel

Post by Natalee »

Sa se determine \( k \ \in \ N \), stiind ca are loc egalitatea:

\( \frac{2^{^{3k + 5}} \ + \ 2^{^{3k+2}} \ - \ 2^{^{3k+4}}}{2^{^{2k+5}} \ - \ 2^{^{2k+3}} \ + \ 2^{^{2k+4}}} \ = \ 512 \)
*Nu vă uitaţi la cât ştie un om, ci la cum ştie el* (Montaigne)
La avatar este poza fetiţei mele. Sa nu o deochiaţi!
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

\( \frac {2^{3k+2}(8+1-4)}{2^{2k+3}(4-1+2)} \) \( = 512 \) \( \Rightarrow \frac {5* 2^{3k+2}}{5* 2^{2k+3}} \) \( = 512 \) \( \Rightarrow 2^{k-1} = 2^9 \Rightarrow k=10 \) :P
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Post Reply

Return to “Clasa a VI-a”