Aratati ca numarul:
\( N \ = \ 7 \ + \ 7^{^{2}} \ + \ 7^{^{3}} \ + \ 7^{^{4}} \ + \ ... \ + \ 7^{^{630}} \) este divizibil cu \( 19 \). Este divizibil cu \( 2 \)?
O fi divizibil?
Moderators: Bogdan Posa, Laurian Filip
O fi divizibil?
*Nu vă uitaţi la cât ştie un om, ci la cum ştie el* (Montaigne)
La avatar este poza fetiţei mele. Sa nu o deochiaţi!
La avatar este poza fetiţei mele. Sa nu o deochiaţi!
- Marius Dragoi
- Thales
- Posts: 126
- Joined: Thu Jan 31, 2008 5:57 pm
- Location: Bucharest
\( N = \frac {7(7^{630} -1)}{6} \)
cum \( 7^3 \equiv 1 (mod 19) \) \( \Rightarrow 7^{630}-1 \equiv 0 (mod 19) \) \( \Rightarrow 19 | N \)
la fel : \( 7^2 \equiv 1 (mod 4) \) \( \Rightarrow 7^{630} -1 \equiv 0 (mod 4) \) \( \Rightarrow 2 | N \).
cum \( 7^3 \equiv 1 (mod 19) \) \( \Rightarrow 7^{630}-1 \equiv 0 (mod 19) \) \( \Rightarrow 19 | N \)
la fel : \( 7^2 \equiv 1 (mod 4) \) \( \Rightarrow 7^{630} -1 \equiv 0 (mod 4) \) \( \Rightarrow 2 | N \).
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
The Faculty of Automatic Control and Computers