A si B comuta, atunci det(A^2+B^2)>=(detA-detB)^2

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

A si B comuta, atunci det(A^2+B^2)>=(detA-detB)^2

Post by Cezar Lupu »

Fie \( A, B\in M_{2}(\mathbb{R}) \) doua matrice astfel incat \( AB=BA \). Sa se arate ca \( \det(A^{2}+B^{2})\geq(\det A- \det B) ^{2} \).

Tudorel Lupu, R.M.I. C-ta, 2003
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Putem presupune ca A sau B inversabila, altfel e trivial.

Sa zicem ca B inversabila. ,,Fortand'' factor comun B e suficient sa demonstram relatia:

\( \det (X^2+I_2)\geq (\det X-1)^2 \)

Ori aceasta se reduce la

\( \det^2X+\tr X^2+1\geq \det^2X-2\det X+1 \)

sau

\( (\tr X)^2-2\det X\geq -2\det X \)

ceea ce este evident adevarat.
Post Reply

Return to “Algebra”