Fie \( A,B \in M_{n}(\mathbb{C}) \) astfel incat \( A+B=2AB-BA \). Aratati ca \( (AB-BA)^n=O_{n} \).
Mihai Opincariu, Gazeta Matematica seria B 5-6/2008
(AB-BA)^n=O_n
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Sabin Salajan
- Euclid
- Posts: 29
- Joined: Tue Apr 22, 2008 11:12 am
- Location: Satu Mare
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Notand A=X+I, B=Y+I si inlocuind in enunt obtinem I=2XY-YX.
Folosind relatia \( \tr(XY)=\tr(YX) \) aratam prin inductie dupa k ca \( \tr(XY)^k=n \) pentru orice k natural si de aici \( \tr(XY-YX)^k=\tr(I-XY)^k=n(\sum_{i=0}^{k} C_k^i(-1)^i)=0 \) pentru orice k natural nenul.
Asadar dintr-o propozitie cunoscuta (\( \tr A^m=0 \) pentru orice m natural nenul implica \( A^n=O_n \)), rezulta \( (AB-BA)^n=O_n \).
Folosind relatia \( \tr(XY)=\tr(YX) \) aratam prin inductie dupa k ca \( \tr(XY)^k=n \) pentru orice k natural si de aici \( \tr(XY-YX)^k=\tr(I-XY)^k=n(\sum_{i=0}^{k} C_k^i(-1)^i)=0 \) pentru orice k natural nenul.
Asadar dintr-o propozitie cunoscuta (\( \tr A^m=0 \) pentru orice m natural nenul implica \( A^n=O_n \)), rezulta \( (AB-BA)^n=O_n \).
Last edited by Marius Mainea on Fri Jun 20, 2008 2:47 pm, edited 5 times in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Cazul \( k=0 \) este evident.aratam prin inductie dupa k ca \( \tr(XY)^k=n \)
Presupunem \( \tr(XY)^i=n \), pentru i=0,1,2,...,k. Ridicand la puterea k+1 avem \( (2XY)^{k+1}=(I+YX)^{k+1} \) si aplicand urma (\( \tr(XY)^{k+1}=\alpha \)) avem \( 2^{k+1}\alpha=n(\sum_{i=0}^kC_{k+1}^i)+\alpha \) si de aici concluzia.
Last edited by Marius Mainea on Fri Jun 20, 2008 2:13 pm, edited 3 times in total.
- Sabin Salajan
- Euclid
- Posts: 29
- Joined: Tue Apr 22, 2008 11:12 am
- Location: Satu Mare