Fie \( x, y, z \) numere reale strict pozitive astfel incat \( x+y+z=3 \). Sa se arate ca \( \sqrt{x}+\sqrt{y}+\sqrt{z}\geq xy+yz+zx. \)
Baraj Russia, 2002
Inegalitatea 2, cu radicali
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Inegalitatea 2, cu radicali
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)