Fie a>0 si \( (x_n)_n \) un sir definit prin \( x_1=a \) si
\( x_{n+1}=\frac{x_1}{n+1}+\frac{x_2}{n+2}+....+\frac{x_n}{n+n}, \) \( n\geq 1 \)
Sa se arate ca sirul converge la 0.
Radu Gologan, Shortlist ONM 2005
Sir convergent la 0
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Prin inductie sirul este descrescator si \( x_{n+1}\leq \frac{n}{n+1}x_n \). Deci sirul \( (nx_n) \) este descrescator si marginit, adica are limita. De aici neaparat \( x_n\to 0 \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog