Fie \( f:[0,1]\to\mathbb{R} \) o functie derivabila cu derivata continua astfel incat \( \int_0^1f(x)dx=0 \). Sa se demonstreze ca
\( \int_0^1 |f(x)f^{\prime}(x)|dx\leq\frac{1}{4}\int_0^1 (f^{\prime}(x))^{2}dx \).
Inegalitatea lui Opial
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Inegalitatea lui Opial
Last edited by Cezar Lupu on Sun Jun 29, 2008 10:48 am, edited 1 time in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Inegalitatea lui Opial (clasica):
"Daca \( f:[a,b]\to\mathbb{R} \) este o functie derivabila cu derivata continua si f(a)=f(b)=0, atunci\( \int_a^b{|f(x)f\prime(x)|dx}\leq\frac{b-a}{4}\int_a^b{(f\prime(x))^2dx} \).''
Inegalitatea din enunt este un rezultat al lui Brown-Denzler-Plum, din 2004-2005, si are o demonstratie destul de tehnica, daca nu mai mult.
"Daca \( f:[a,b]\to\mathbb{R} \) este o functie derivabila cu derivata continua si f(a)=f(b)=0, atunci\( \int_a^b{|f(x)f\prime(x)|dx}\leq\frac{b-a}{4}\int_a^b{(f\prime(x))^2dx} \).''
Inegalitatea din enunt este un rezultat al lui Brown-Denzler-Plum, din 2004-2005, si are o demonstratie destul de tehnica, daca nu mai mult.
- Dragos Fratila
- Newton
- Posts: 313
- Joined: Thu Oct 04, 2007 10:04 pm
Poate e de ajutor:
http://www.emis.de/journals/JIPAM/image ... 279_06.pdf
http://www.emis.de/journals/JIPAM/image ... 279_06.pdf
"Greu la deal cu boii mici..."