Se dau numerele reale \( x,y,z \geq 0 \). Sa se demonstreze inegalitatea
\( \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y} \geq \sqrt{2} \cdot \sqrt{2-\frac{7xyz}{(x+y)(y+z)(z+x)}} \)
Andrei Ciupan, Shortlist ONM 2008
O alta inegalitate din lista scurta 2008
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
O alta inegalitate din lista scurta 2008
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)