Inegalitate din RMCS

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate din RMCS

Post by Claudiu Mindrila »

Sa se demonstreze inegalitatea: \( \frac{ac}{2ac+b^2}+\frac{bc}{2bc+a^2}+\frac{ab}{2ab+c^2}\leq 1 \), oricare ar fi \( a,b,c \) numere reale pozitive.

Nicolae Staniloiu, RMCS 20
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

\( \sum_{cyc}{} {\frac {2ac}{2ac+b^2}} \leq 2 \Leftrightarrow \)\( \sum_{cyc}{} {\frac {b^2}{2ac+b^2}} \geq 1 \)

dar \( \sum_{cyc}{} {\frac {b^2}{2ac+b^2}} \) \( \frac {Cauchy}{\geq} \) \( \frac {({a+b+c)}^2}{\sum_{cyc}{} {(a^2+2ab)}} \) \( = \) \( \frac {{(a+b+c)}^2}{{(a+b+c)}^2} =1 \) Q.E.D.
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Post Reply

Return to “Clasa a IX-a”