Patrulater

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata, Virgil Nicula

Post Reply
User avatar
Vlad Matei
Pitagora
Posts: 58
Joined: Wed Sep 26, 2007 6:44 pm
Location: Bucuresti

Patrulater

Post by Vlad Matei »

Punctele \( K,L,M,N \) sunt mijloacele laturilor \( AB,BC,CD,DA \) ale unui patrulater convex \( ABCD \). Linia \( KM \) intersecteaza diagonalele \( AC \) si \( BD \) in \( P \) si \( Q \). Linia \( LN \) intersecteaza diagonalele \( AC \) si \( BD \) in \( R \) si \( S \). Sa se arate ca daca \( AP \cdot PC=BQ\cdot QD \), atunci \( AR\cdot RC =BS\cdot SD \).

Zhautykov Olympiad, 2008
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Aratam ca fiecare din relatiile \( AP\cdot PC=BQ\cdot QD \) si \( AR\cdot RC=BS\cdot SD \) sunt echivalente cu \( AC=BD \)


Intr-adevar daca KM intersecteaza BC in E conform teoremei lui Menelaus avem \( \frac{EC}{EB}\cdot 1\cdot \frac{AP}{PC}=1 \)

si \( \frac{EC}{EB}\cdot \frac{BQ}{QD}\cdot 1=1 \) echivalent cu \( \frac{AP}{PC}=\frac{BQ}{QD}=\frac{EB}{EC}=k \) si atunci :

1) Daca presupunem \( AP\cdot PC=BQ\cdot QD \) atunci \( k\cdot PC^2=k\cdot QD^2 \) deci PC=QD \( \Rightarrow \) AP=BQ si de aici prin adunare AC=BD.

2) Daca presupunem ca \( AC=BD \) atunci \( PC+k\cdot PC=QD+k\cdot QD \) \( \Rightarrow \) PC=QD \( \Rightarrow \) \( k\cdot PC^2=k\cdot QD^2 \) deci \( AP\cdot PC=BQ\cdot QD \).

Daca KM intersecteaza pe AD in F procedam analog.

In sfarsit daca \( BC\parallel KM\parallel AD \) este trivial.

Pentru cealalta egalitate \( AR\cdot RC=BS\cdot SD \) se procedeaza analog.
Post Reply

Return to “Geometrie”