a) Fie \( f:\mathbb{R}\to\mathbb{R} \) o functie care admite o primitiva \( F:\mathbb{R}\to\mathbb{R} \) astfel incat
\( F(x)\sin x\leq f(x)\cos x, \forall x\in\mathbb{R} \).
Sa se arate ca \( f(x)=0,\forall x\in\mathbb{R} \).
b) Determinati functiile \( f:\mathbb{R}\to\mathbb{R} \) care admit o primitiva \( F:\mathbb{R}\to\mathbb{R} \) care satisface proprietatea:
\( f(x)\cos x\geq F(x)\sin x+\cos 2x,\forall x\in\mathbb{R} \).
Nelu Chichirim, Olimpiada locala Constanta, 2008
Inegalitati cu primitive si functii trigonometrice
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Tudorel Lupu
- Euclid
- Posts: 15
- Joined: Mon Oct 01, 2007 8:58 pm
- Location: Constanta
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
a) Avem \( (\sin xF(x))^\prime\geq0 \), de aici \( G(x)=\sin xF(x) \) este crescatoare si cum \( G\left(\frac{(2k+1)\pi}{2}\right)=0 \) rezulta G(x)=0, F(x)=0, f(x)=0.
b) \( \left(F(x)\cos x-\frac{\sin 2x}{2}\right)^\prime\geq0 \) si la fel ca mai sus \( F(x)\cos x-\frac{\sin 2x}{2}=0 \) deci \( F(x)=\sin x \) pentru \( x\neq\frac{(2k+1)\pi}{2} \) si din continuitate pe \( \mathbb{R} \).
Asadar \( f(x)=\cos x \).
b) \( \left(F(x)\cos x-\frac{\sin 2x}{2}\right)^\prime\geq0 \) si la fel ca mai sus \( F(x)\cos x-\frac{\sin 2x}{2}=0 \) deci \( F(x)=\sin x \) pentru \( x\neq\frac{(2k+1)\pi}{2} \) si din continuitate pe \( \mathbb{R} \).
Asadar \( f(x)=\cos x \).