Numar de N-uple cu suma multiplu de n

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Numar de N-uple cu suma multiplu de n

Post by Filip Chindea »

Fie \( m, n \) intregi, \( 0 \le m \le n \), \( n \ge 1 \), \( N \) un intreg impar pozitiv iar \( S = \overline{1, n} \). Fixam \( T \subseteq S \), \( |T| = m \), si \( \overline{T} := S \ T \).
Sa se determine numarul de \( (x_1, ..., x_N) \in T^N \cup \overline{T}^N \) astfel incat \( x_1 + \cdots + x_N \equiv 0 \pmod{n} \).

[ Teste tip OIM 2008 - Problema 3/Testul 3 ]
Life is complex: it has real and imaginary components.
Post Reply

Return to “Teoria Numerelor”