IMC 2008 ziua 2 problema 6

Moderator: Liviu Paunescu

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

IMC 2008 ziua 2 problema 6

Post by Beniamin Bogosel »

Fie \( \mathcal{H} \) un spatiu Hilbert infinit dimensional. Fie \( d>0 \) si \( S \) o multime de puncte (nu neaparat numarabila) in \( \mathcal{H} \) astfel incat distanta dintre orice doua puncte distincte din \( S \) este egala cu \( d \). Demonstrati ca exista un punct \( y \in \mathcal{H} \) astfel incat
\( \{\frac{\sqrt{2}}{d}(x-y): x \in S\} \) este un sistem ortonormal de vectori in \( \mathcal H \).

IMC 2008

(Nu stiu daca am nimerit categoria corecta la problema asta. Daca trebuia postata altundeva, ziceti, sau daca stiu administratorii o muta ei. Multumesc :) )
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Analiza functionala si teorie spectrala”