Fie \( a_1,\ldots,a_n \) numere complexe. Notam \( a=(a_1+\ldots+a_n)/n \).
Consideram sirul
\( x_1 = (a_1,a_2,\ldots,a_n) \)
\( x_2 = ((a_1+a_2)/2,(a_2+a_3)/2,...,(a_n+a_1)/2) \stackrel{not}{=} (b_1,\ldots,b_n) \)
\( x_3=((b_1+b_2)/2,...,(b_n+b_1)/2) \) si tot asa mai departe \( x_4,x_5,... \)
Demonstrati sau infirmati: \( x_k\to (a,a,\ldots,a) \)
Sir de numere complexe
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Dragos Fratila
- Newton
- Posts: 313
- Joined: Thu Oct 04, 2007 10:04 pm
Sir de numere complexe
"Greu la deal cu boii mici..."
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
In primul rand presupunem ca nu pornim cu toate \( a_i \) egale ca e prea simplu, deci avem cel putin doua distincte.
Cred ca putem defini pentru \( x=(x_1,...,x_n) \) ceva de genul
\( ||x||=\max_{1\leq i<j \leq n}|x_i-x_j| \).
Acum, pentru sirul nostru, daca \( ||x_n||=s_n,\ \forall n \), atunci daca \( x_{n}=(a_1,...,a_n) \) si \( x_{n+1}=(\frac{a_1+a_2}{2},... ) \) atunci exista \( 1\leq i<j\leq n \) astfel incat \( s_{n+1}=\frac{|a_i-a_{i+1}|+|a_j-a_{j+1}|}{2}\leq s_n \) si asta pentru orice \( n \), ceea ce ne arata ca \( s_n\to s\geq 0 \).
Deci daca \( ||x_n||\to 0 \) atunci ar rezulta concluzia din enunt. Sper ca e de ajutor, ca nu imi iese mai departe acum.
Cred ca putem defini pentru \( x=(x_1,...,x_n) \) ceva de genul
\( ||x||=\max_{1\leq i<j \leq n}|x_i-x_j| \).
Acum, pentru sirul nostru, daca \( ||x_n||=s_n,\ \forall n \), atunci daca \( x_{n}=(a_1,...,a_n) \) si \( x_{n+1}=(\frac{a_1+a_2}{2},... ) \) atunci exista \( 1\leq i<j\leq n \) astfel incat \( s_{n+1}=\frac{|a_i-a_{i+1}|+|a_j-a_{j+1}|}{2}\leq s_n \) si asta pentru orice \( n \), ceea ce ne arata ca \( s_n\to s\geq 0 \).
Deci daca \( ||x_n||\to 0 \) atunci ar rezulta concluzia din enunt. Sper ca e de ajutor, ca nu imi iese mai departe acum.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Tiberiu Popa
- Euclid
- Posts: 19
- Joined: Thu Oct 04, 2007 1:32 am
Solutia lui Octavian a problemei de la Seemous (aia cu poligonu`) se baza pe ideea asta:
\( x_{k+1} = A x_k \), unde \( A = \begin{pmatrix} \frac12 & \frac12 & 0 & \ldots & 0 \\ 0 & \frac12 & \frac12 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac12 & 0 & 0 & \ldots & \frac12 \end{pmatrix} \). De aici iese \( x_k = A^k x_0 \).
Valorile proprii ale lui \( A \) sunt \( \frac{1+\omega^n}2 \), unde omega e radacina primitiva de ordin n a unitatii.
In particular, \( A \) e diagonalizabila, iar \( A^k \) converge catre o matrice \( B \) de rang 1.
Daca \( j \) e vectorul cu 1 peste tot, atunci \( Aj = j \), deci \( Bj = j \) => \( \text{Im} (B) = \{ \left( a, a, \ldots, a \right) \} \). Mai observam ca \( A^k x \) are aceeasi suma a elementelor ca si \( x \), deci si \( Bx \) are aceeasi suma a elementelor, i.e. daca \( Bx = \left( a, a, \ldots, a \right) \), atunci \( na = a_1 + \ldots + a_n \), qed.
\( x_{k+1} = A x_k \), unde \( A = \begin{pmatrix} \frac12 & \frac12 & 0 & \ldots & 0 \\ 0 & \frac12 & \frac12 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac12 & 0 & 0 & \ldots & \frac12 \end{pmatrix} \). De aici iese \( x_k = A^k x_0 \).
Valorile proprii ale lui \( A \) sunt \( \frac{1+\omega^n}2 \), unde omega e radacina primitiva de ordin n a unitatii.
In particular, \( A \) e diagonalizabila, iar \( A^k \) converge catre o matrice \( B \) de rang 1.
Daca \( j \) e vectorul cu 1 peste tot, atunci \( Aj = j \), deci \( Bj = j \) => \( \text{Im} (B) = \{ \left( a, a, \ldots, a \right) \} \). Mai observam ca \( A^k x \) are aceeasi suma a elementelor ca si \( x \), deci si \( Bx \) are aceeasi suma a elementelor, i.e. daca \( Bx = \left( a, a, \ldots, a \right) \), atunci \( na = a_1 + \ldots + a_n \), qed.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Acuma-mi dau seama ca problema asta e chiar problema de la SEEMOUS cu poligonul, scrisa in numere complexe...
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog