Functie derivabila
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Functie derivabila
Determinati toate functiile derivabile \( f:\mathbb{R}\to \mathbb{R} \) cu \( f\circ f=f \).
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Derivam relatia si avem \( f^\prime (f(x)) f^\prime (x)=f^\prime(x),\ \forall x \in \mathbb{R} \). Facem \( x \to f(x) \) si folosim enuntul: \( (f^\prime(f(x)))^2=f^\prime(f(x)),\ \forall x \in \mathbb{R} \). Deoarece compusa a doua functii cu proprietatea lui Darboux are proprietatea lui Darboux si \( f^\prime(f(x))\in \{0,1\},\ \forall x \in \mathbb{R} \) rezulta ca \( f^\prime(f(x))=0,\ \forall x \in \mathbb{R} \) sau \( f^\prime(f(x))=1,\ \forall x \in \mathbb{R} \).
De aici, mai e putin...
De aici, mai e putin...
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog