Daca \(
a,b,c \in (0; + \infty )
\), astfel incat \(
a^6 + b^6 + c^6 = 1
\), sa se arate ca: \(
\left( {a + b + c + d} \right)^2 \leq \frac{{b^2 c^2 d^2 }}
{{a^{10} }} + \frac{{a^2 c^2 d^2 }}
{{b^{10} }} + \frac{{a^2 b^2 d^2 }}
{{c^{10} }} + \frac{{a^2 b^2 c^2 }}
{{d^{10} }}
\).
Alexandru Negrescu, Axioma, nr. 23
Inegalitate nice
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate nice
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)