Numerele reale pozitive a, b, c verifica relatia 2abc+ab+bc+ca=1. Sa se arate ca:
\( \sqrt {ab}+\sqrt {bc} +sqrt{ca}\leq \frac{3}{2} \).
Vasile Pop SHL 2005
2abc+ab+bc+ca+1....
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
2abc+ab+bc+ca+1....
Last edited by Marius Mainea on Thu Aug 07, 2008 11:27 pm, edited 2 times in total.
Conditia imi aduce aminte de o substitutie pe care eu o retin foarte usor facand legatura cu inegalitatea lui Nesbitt.
Existenta numerelor \( a,b,c \in \mathbb{R}_{+} \) care satisfac conditia din enunt \( 2abc+ab+bc+ca=1 \) implica existenta numerelor pozitive \( x,\ y,\ z \) astfel incat:
\( a = \frac{x}{y+z};\ b = \frac{y}{x+z};\ c = \frac{z}{x+y} \) .
Acum deconditionam inegalitatea si avem:
\( \sum_{cyc} \sqrt{\frac{xy}{(x+z)(y+z)}} \geq \frac{3}{2} \).
Acum aplicam inegalitatea \( GM \geq HM \) si anume
\( \sqrt{\frac{xy}{(x+z)(y+z)}} \geq 2 \frac{ \frac{x}{x+z} \cdot \frac{y}{y+z} }{\frac{x}{x+z} + \frac{y}{y+z} } = \frac{2xy}{2xy + yz + xz} \).
Notam cu \( s = xy+yz + zx \). Atunci daca adunam inegalitatile analoage, obtinute anterior (din \( GM \geq HM \)), ramane de demonstrat ca:
\( E= \frac{xy}{s+xy} + \frac{yz}{s+yz} + \frac{xz}{s+xz} \geq \frac{3}{4} \).
Din Cauchy, avem:
\( ( xy(s+xy) + yz(s+yz) +xz(s+xz) ) \cdot E \geq s^2 \) .
De aici, \( E \geq \frac{s^2}{s^2 + (xy)^2 + (yz)^2 +(xz)^2} \), trebuie sa aratam doar ca \( \frac{s^2}{s^2 + (xy)^2 + (yz)^2 +(xz)^2} \geq \frac{3}{4} \), adica \( s^2 \geq (xy)^2 + (yz)^2 +(xz)^2 \) care este evident.
Inegalitatea este demonstrata.
Existenta numerelor \( a,b,c \in \mathbb{R}_{+} \) care satisfac conditia din enunt \( 2abc+ab+bc+ca=1 \) implica existenta numerelor pozitive \( x,\ y,\ z \) astfel incat:
\( a = \frac{x}{y+z};\ b = \frac{y}{x+z};\ c = \frac{z}{x+y} \) .
Acum deconditionam inegalitatea si avem:
\( \sum_{cyc} \sqrt{\frac{xy}{(x+z)(y+z)}} \geq \frac{3}{2} \).
Acum aplicam inegalitatea \( GM \geq HM \) si anume
\( \sqrt{\frac{xy}{(x+z)(y+z)}} \geq 2 \frac{ \frac{x}{x+z} \cdot \frac{y}{y+z} }{\frac{x}{x+z} + \frac{y}{y+z} } = \frac{2xy}{2xy + yz + xz} \).
Notam cu \( s = xy+yz + zx \). Atunci daca adunam inegalitatile analoage, obtinute anterior (din \( GM \geq HM \)), ramane de demonstrat ca:
\( E= \frac{xy}{s+xy} + \frac{yz}{s+yz} + \frac{xz}{s+xz} \geq \frac{3}{4} \).
Din Cauchy, avem:
\( ( xy(s+xy) + yz(s+yz) +xz(s+xz) ) \cdot E \geq s^2 \) .
De aici, \( E \geq \frac{s^2}{s^2 + (xy)^2 + (yz)^2 +(xz)^2} \), trebuie sa aratam doar ca \( \frac{s^2}{s^2 + (xy)^2 + (yz)^2 +(xz)^2} \geq \frac{3}{4} \), adica \( s^2 \geq (xy)^2 + (yz)^2 +(xz)^2 \) care este evident.
Inegalitatea este demonstrata.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Conform observatiei lui turcas, alegem \( a=\frac{x}{y+z},\ b=\frac{y}{z+x},\ c=\frac{z}{x+y} \). Problema revine la a arata ca daca \( x,y,z>0 \), atunci are loc inegalitatea:
\( \sqrt{\frac{xy}{(z+x)(z+y)}}+\sqrt{\frac{yz}{(x+y)(x+z)}}+\sqrt{\frac{zx}{(y+x)(z+y)}} \leq \frac{3}{2} \).
Aplicand inegalitatea \( AM-GM \) deducem ca \( LHS \leq \frac{\frac{x}{z+x}+\frac{y}{y+z}+\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{z+y}+\frac{x}{x+y}}{2}=\frac{3}{2} \).
\( \sqrt{\frac{xy}{(z+x)(z+y)}}+\sqrt{\frac{yz}{(x+y)(x+z)}}+\sqrt{\frac{zx}{(y+x)(z+y)}} \leq \frac{3}{2} \).
Aplicand inegalitatea \( AM-GM \) deducem ca \( LHS \leq \frac{\frac{x}{z+x}+\frac{y}{y+z}+\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{z+y}+\frac{x}{x+y}}{2}=\frac{3}{2} \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Re: 2abc+ab+bc+ca+1....
Alta solutie.Marius Mainea wrote:Numerele reale pozitive a, b, c verifica relatia 2abc+ab+bc+ca=1. Sa se arate ca:
\( \sqrt {ab}+\sqrt {bc} +sqrt{ca}\leq \frac{3}{2} \).
Vasile Pop SHL 2005
Relatia din ipoteza mai poate fi scrisa si sub urmatoarea forma:
\( 2\sqrt{ab}\sqrt{bc}\sqrt{ca}+(\sqrt{ab})^{2}+(\sqrt{bc})^{2}+(\sqrt{ca})^{2}=1 \).
Exista astfel \( A, B, C\in \left(0, \frac{\pi}{2}\right) \) astfel incat
\( \sqrt{ab}=\cos C, \sqrt{bc}=\cos A, \sqrt{ca}=\cos B \) deoarece este adevarata urmatoare identitate, i.e.
\( \cos^2 A+\cos^2 B+\cos^2 C+2\cos A\cos B\cos C=1 \).
Astfel concluzia problemei noastre s-a redus la urmatoarea inegalitate (valabila in orice triunghi ascutitunghic) cunoscuta si anume:
\( \cos A+\cos B+\cos C\leq\frac{3}{2}. \) \( \qed \)
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Sau, se poate demonstra ca \( \cos A+\cos B+\cos C=\frac{R+r}{R} \) si aplicand inegalitatea lui Euler, \( R\geq 2r \), vom obtine inegalitatea dorita.maxim bogdan wrote:De fapt inegalitatea \( \cos A+\cos B+\cos C\le \frac{3}{2} \) este valabila pentru orice triunghi, deoarece
\( 3-2(\cos A+\cos B+\cos C)=(\sin A-\sin B)^2+(\cos A+\cos B-1)^2\ge 0 \).
Am folosit faptul ca \( \cos C=\cos(\pi-A-B)=-\cos(A+B)=-\cos A\cos B+\sin A \sin B \).