Functie continua si periodica cu primitiva nemarginita

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Functie continua si periodica cu primitiva nemarginita

Post by Cezar Lupu »

Sa se arate ca daca \( f:\mathbb{R}\to\mathbb{R} \) este o functie continua, periodica si care admite o primitiva nemarginita, atunci \( f \) este constanta.
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

Sigur e asta problema ?

Putem lua \( F:\mathbb{R} \to\mathbb{R} \), \( F(x)=x-\cos x \), nemarginita, si \( f:\mathbb{R} \to\mathbb{R}, f(x)=1+\sin x \). Evident f continua, f periodica si \( F^{\prime}(x)=f(x) \). Dar f nu este constanta.
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Analiza matematica”