nu exista functii reale cu |f(x)-f(y)|>1 pt. orice x, y
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
nu exista functii reale cu |f(x)-f(y)|>1 pt. orice x, y
Sa se arate ca nu exista functii \( f:\mathbb{R}\to\mathbb{R} \) cu proprietatea ca \( |f(x)-f(y)|>1, \forall x, y\in\mathbb{R} \) cu \( x\neq y \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
- Alin Galatan
- Site Admin
- Posts: 247
- Joined: Tue Sep 25, 2007 9:24 pm
- Location: Bucuresti/Timisoara/Moldova Noua
-
pevcipierdut
- Arhimede
- Posts: 9
- Joined: Tue Oct 02, 2007 11:12 pm