Cate numere de forma...
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Cate numere de forma...
Cate numere \( \overline{abcabc} \) se pot scrie sub forma \( \overline{abcabc}=n+2n+3n+...+90n \), unde \( n \) este numar natural?
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
naruto, esti foarte aproape de rezolvarea problemei.
\( n+2n+...+90n=1001 \cdot \overline{abc}\Longleftrightarrow n=\frac{1001 \cdot \overline{abc}}{1+2+...+90}=\frac{1001 \cdot \overline{abc}}{45 \cdot 91}=\frac{11 \cdot \overline{abc}}{45}\in \mathbb{N}. \)
Insa \( (45,91)=1 \Longrightarrow \overline{abc}=45 \cdot k(k\in \mathbb{N}) \). Cum \( \overline{abc} < 1000 \) evident \( k\in {3,4,5,...,22} \).
Sunt \( 20 \) de numere de forma \( \overline{abcabc} \) care verifica conditia problemei.
\( n+2n+...+90n=1001 \cdot \overline{abc}\Longleftrightarrow n=\frac{1001 \cdot \overline{abc}}{1+2+...+90}=\frac{1001 \cdot \overline{abc}}{45 \cdot 91}=\frac{11 \cdot \overline{abc}}{45}\in \mathbb{N}. \)
Insa \( (45,91)=1 \Longrightarrow \overline{abc}=45 \cdot k(k\in \mathbb{N}) \). Cum \( \overline{abc} < 1000 \) evident \( k\in {3,4,5,...,22} \).
Sunt \( 20 \) de numere de forma \( \overline{abcabc} \) care verifica conditia problemei.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste