Inegalitatea 4, conditionata, cu xy+yz+zx+xyz=4

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Inegalitatea 4, conditionata, cu xy+yz+zx+xyz=4

Post by Cezar Lupu »

Fie \( x, y, z \) trei numere reale strict pozitive astfel incat \( xy+yz+zx+xyz=4 \). Sa se arate ca \( x+y+z\geq xy+yz+zx \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
pohoatza

Post by pohoatza »

Este o inegalitate destul de OK, dar hai sa nu postam chiar probleme care sunt deja puse de \( n^{n^{\cdots n^{n}}} \) ori pe Mathlinks.

Pentru cei care nu au mai intalnit-o pana acum, folositi substitutiile \( x=\frac{2a}{b+c} \), \( y=\frac{2b}{c+a} \), \( z=\frac{2c}{a+b} \).
Post Reply

Return to “Inegalitati”