A matrice rationala cu detA=-2

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

A matrice rationala cu detA=-2

Post by Cezar Lupu »

Fie \( A\in M_{n}(\mathbb{Q}) \) cu proprietatea ca \( \det(A+\sqrt[n]{2}\cdot I_{n})=0 \). Sa se arate ca \( \det A=-2 \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Folosim afirmatia: Daca \( a_0+a_1\sqrt[n]2+a_2\sqrt[n]2^2...+a_{n-1}\sqrt[n]2^{n-1}=0,\ a_i\in \mathbb{Q} \), atunci \( a_i=0 \) pentru orice i.

De aici rezulta ca toti coeficientii polinomului caracterisic sunt nuli cu exceptia primului si ultimului.
Post Reply

Return to “Algebra”