ineg

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

ineg

Post by BogdanCNFB »

Fie \( n\ge 3 \) si \( a_1,a_2,...,a_n\in(0,\propto) \) cu \( s=a_1+a_2+...+a_n \).
Sa se arate ca \( \prod_{k=1}^n(s-(n-1)a_k)\leq a_1a_2\cdot...\cdot a_n \).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notand \( x_k=S-(n-1)a_k \) , \( k=\overline{1,n} \) , inegalitatea devine \( \prod_{k=1}^nx_k\le \frac{(x_1+x_2...+x_{n-1})....(x_2+x_3+...+x_n)}{(n-1)^n} \) ceea ce se demonstreaza usor folosind inegalitatea mediilor.
Post Reply

Return to “Clasa a IX-a”