3 inegalitati in triunghi

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

3 inegalitati in triunghi

Post by BogdanCNFB »

1) Sa se arate ca in orice triunghi avem:
\( R+r\geq\sqrt[3]{r_ar_br_c} \).

2)Sa se arate ca in orice triunghi avem:
\( \frac{a^2+b^2+c^2}{2rp}\geq\frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C}\geq\frac{a^2+b^2+c^2}{Rp} \).

3)Fie ABC un triunghi ascutitunghic si K un punct interior lui. Notam cu \( \alpha,\beta,\gamma \) masurile unghiurilor BAK,CBK,ACK.
Sa se arate ca:
\( ctg^2\alpha+ctg^2\beta+ctg^2\gamma>3 \).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

2) \( \sum{\frac{1}{\sin A}}=\sum{\frac{2R}{a}}\ge \frac{2\cdot9R}{a+b+c}=\frac{9R^2}{Rp}\ge \frac{a^2+b^2+c^2}{Rp} \)
Last edited by Marius Mainea on Wed Nov 26, 2008 8:54 pm, edited 1 time in total.
Post Reply

Return to “Clasa a X-a”