Doua probleme de la Arhimede, faza I, 2007

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Doua probleme de la Arhimede, faza I, 2007

Post by Claudiu Mindrila »

\( 1. \)
Sa se arate ca daca numerele reale \( a,b \) satisfac relatia \( a(a-1)=b(1-b) \), atunci \( a,b \in \left [\frac{1-\sqrt{2}}{2}, \frac{1+\sqrt{2}}{2} \right ] \).

\( 2. \)
Fie \( a,b,c,m,n,p \in \mathbb{R} \) astfel incat \( a<b<c \) si \( m<n<p \). Sa se arate ca \( an+bp+cm< am+bn+cp. \)
Liviu Oprisescu
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

1) \( (a-\frac{1}{2})^2+(b-\frac{1}{2})^2=\frac{1}{2}
\)

De aici \( (a-\frac{1}{2})^2\le \frac{1}{2} \)

\( |a-\frac{1}{2}|\le \frac{\sqrt{2}}{2} \) si de aici concluzia.

2) Inegalitatea rearanjamentelor.

Inegalitatea este echivalenta cu \( 0<(b-c)(m-p)+(a-b)(m-n) \)
Post Reply

Return to “Clasa a VIII-a”