\( 1. \)
Sa se arate ca daca numerele reale \( a,b \) satisfac relatia \( a(a-1)=b(1-b) \), atunci \( a,b \in \left [\frac{1-\sqrt{2}}{2}, \frac{1+\sqrt{2}}{2} \right ] \).
\( 2. \)
Fie \( a,b,c,m,n,p \in \mathbb{R} \) astfel incat \( a<b<c \) si \( m<n<p \). Sa se arate ca \( an+bp+cm< am+bn+cp. \)
Liviu Oprisescu
Doua probleme de la Arhimede, faza I, 2007
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Doua probleme de la Arhimede, faza I, 2007
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)