Studiati convergenta unui sir

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
Razvan Balan
Euclid
Posts: 16
Joined: Tue Feb 19, 2008 10:10 pm

Studiati convergenta unui sir

Post by Razvan Balan »

Studiati convergenta sirului \( x_n=\sin n \), \( n\geq0 \)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Exista o infinitate de numere naturale aflate in intervalele \( [2k\p,\frac{\pi}{3}+2k\pi] \) cat si in intervalele \( [-\frac{\pi}{2}+2k\pi,-\frac{\pi}{6}+2k\pi] \) , \( k\in \mathbb{N^\ast} \)

Asadar \( x_n \) contine doua subsiruri in intervalele \( [0,\frac{\sqrt{3}}{2}] \) si \( [-1,-\frac{1}{2}] \) deci nu poate fi convergent.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Re: studiati convergenta

Post by Virgil Nicula »

Razvan Balan wrote: Studiati convergenta sirului \( x_n=\sin n \), \( n\geq0 \)
Deoarece sirul \( x_n \) este marginit rezulta ca sirul \( x_n \) este ori convergent ori nu are limita.

Presupunem prin absurd ca sirul \( x_n \) este convergent, adica \( \sin n\rightarrow l\in\mathbb R \) .

In particular, si subsirurile \( \sin (n+1) \) , \( \sin (n-1) \) , \( \sin 2n \) au aceeasi limita \( l\in\mathbb R \) . Insa

\( \triangleright\ \sin (n+1)-\sin (n-1)=2\cdot\sin 1\cdot\cos n \) \( \Longrightarrow \) \( \cos n\rightarrow 0 \) .

\( \triangleright\ \sin 2n=2\cdot\sin n\cdot\cos n \) \( \Longrightarrow \) \( \sin 2n\rightarrow 0 \) \( \Longrightarrow \) \( \sin n\rightarrow 0 \) .

Prin urmare, \( 1=\sin^2n+\cos^2n\rightarrow 0 \) , ceea ce este absurd.
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Se poate demonstra chiar si mai mult, si anume ca multimea punctelor limita a sirului este chiar intervalul \( [-1,1] \).

Deoarece \( 2\pi \) este irational, deducem din teorema lui Kronecker ca multimea \( \{2m\pi+n: m,n\in \mathbb{Z}\} \) e densa in \( \mathbb{R} \). Atunci pentru orice \( l \in \mathbb{R} \) exista un sir din multime care tinde la \( l \). Ii aplicam sinus, care e o functie continua si astfel sirul tinde la \( \sin l \). Mai departe gasim un subsir \( \sin k_n \) cu \( k_n \) numere naturale si \( \sin k_n \to \sin l \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Marcelina Popa
Bernoulli
Posts: 208
Joined: Wed Mar 05, 2008 3:25 pm
Location: Tulcea
Contact:

Post by Marcelina Popa »

Presupunem prin absurd ca sirul \( x_n \) este convergent, adica \( \sin n\rightarrow l\in\mathbb R \).

In particular, si subsirurile \( \sin (n+1) \), \( \sin (n-1) \), \( \sin 2n \) au aceeasi limita \( l\in\mathbb R \). Insa

\( \triangleright\ \sin (n+1)-\sin (n-1)=2\cdot\sin 1\cdot\cos n \Longrightarrow \cos n\rightarrow 0 \).

\( \triangleright\ \sin 2n=2\cdot\sin n\cdot\cos n \Longrightarrow \sin 2n\rightarrow 0 \Longrightarrow \sin n\rightarrow 0 \).

Prin urmare, \( 1=\sin^2n+\cos^2n\rightarrow 0 \), ceea ce este absurd.
Frumoasa rezolvare! :)
Post Reply

Return to “Analiza matematica”