Divizibilitate (O.J.)
Moderators: Bogdan Posa, Laurian Filip
-
Marcelina Popa
- Bernoulli
- Posts: 208
- Joined: Wed Mar 05, 2008 3:25 pm
- Location: Tulcea
- Contact:
Divizibilitate (O.J.)
1. Stiind ca numarul \( \overline{abc} \) este divizibil prin \( a+b+c \), aratati ca si numarul \( \overline{(b+c)(a+c)(a+b)} \) este divizibil prin \( a+b+c \).
2. Aratati ca numarul
\( N=7^0+7^1+7^2+7^3+...+7^{1999} \)
se divide cu \( 400 \).
2. Aratati ca numarul
\( N=7^0+7^1+7^2+7^3+...+7^{1999} \)
se divide cu \( 400 \).
- miruna.lazar
- Bernoulli
- Posts: 224
- Joined: Wed Oct 08, 2008 8:41 pm
- Location: Tulcea
2 . Este foarte simplu.
Grupam cei 2000 de termeni in grupe de cate 5. Avem :
\( N = ( 7^0 + 7^1 + 7^2 + 7^3 + 7^4 ) + ( 7^5 + 7^6 + 7^7 + 7^8 + 7^9 ) + ... + ( 7^{1995} + 7^ {1996} + 7^{1997} + 7^{1998} + 7^{1999} )
N= 7^0 ( 1 + 7 + 7^2 + 7^3 ) + 7^5 ( 1 + 7 + 7^2 + 7^3 ) +...+ 7^{1995} ( 1 + 7 + 7^2 + 7^3 )
N = 7^0 \cdot 400 + 7^5 \cdot 400 + ... + 7^{1995} \cdot 400 \)
\( N = 400 ( 7^0 + 7^5 + ... + 7^{1995} ) \)
Deci , => \( N \) este divizibil cu 400
Ma mai gandesc la 1
Grupam cei 2000 de termeni in grupe de cate 5. Avem :
\( N = ( 7^0 + 7^1 + 7^2 + 7^3 + 7^4 ) + ( 7^5 + 7^6 + 7^7 + 7^8 + 7^9 ) + ... + ( 7^{1995} + 7^ {1996} + 7^{1997} + 7^{1998} + 7^{1999} )
N= 7^0 ( 1 + 7 + 7^2 + 7^3 ) + 7^5 ( 1 + 7 + 7^2 + 7^3 ) +...+ 7^{1995} ( 1 + 7 + 7^2 + 7^3 )
N = 7^0 \cdot 400 + 7^5 \cdot 400 + ... + 7^{1995} \cdot 400 \)
\( N = 400 ( 7^0 + 7^5 + ... + 7^{1995} ) \)
Deci , => \( N \) este divizibil cu 400
Ma mai gandesc la 1
-
Marcelina Popa
- Bernoulli
- Posts: 208
- Joined: Wed Mar 05, 2008 3:25 pm
- Location: Tulcea
- Contact:
- Dorobantu Razvan
- Pitagora
- Posts: 50
- Joined: Thu Oct 09, 2008 9:12 pm
- miruna.lazar
- Bernoulli
- Posts: 224
- Joined: Wed Oct 08, 2008 8:41 pm
- Location: Tulcea
- miruna.lazar
- Bernoulli
- Posts: 224
- Joined: Wed Oct 08, 2008 8:41 pm
- Location: Tulcea
-
Marcelina Popa
- Bernoulli
- Posts: 208
- Joined: Wed Mar 05, 2008 3:25 pm
- Location: Tulcea
- Contact:
- miruna.lazar
- Bernoulli
- Posts: 224
- Joined: Wed Oct 08, 2008 8:41 pm
- Location: Tulcea
- miruna.lazar
- Bernoulli
- Posts: 224
- Joined: Wed Oct 08, 2008 8:41 pm
- Location: Tulcea
Bun . Acum presupun ca am lucrat mai bine , deci trec la problema 1
\( \overline {abc} = 100a + 10b + c \vdots ( a +b +c ) \)
\( \overline { (b+c ) (a+c)(a+b) } = ( b + c ) 100 + ( a +c )10 + (a+b) \)
\( = 100b + 100c + 10a +10c + a + b = \)
\( = 11a + 101b + 110c \)
\( = ( 11a + 11b + 11 c ) + ( 90b+99c ) \)
\( = 11 ( a+ b+ c ) + ( 90b + 99c ) \)-> Notam relatia cu *
1) a + b +c | 100 + 10b + c
2) a + b + c | a+ b + c => a + b +c | 100 ( a + b+ c )
=> a+ b + c |100a + 100b + 100c
(1) = a +b +c | 100a+10b+c
=> a+b+c | 100a+100b+100c - 100a - 10b- c
=> a + b + c | 90b + 99c -> Notam relatia cu **
Cum a+b+c |11 ( a+b+c)
a+b+c | 90b + 99c =>
a + b+c | 11 ( a+b+c ) + 90b + 99c = \( \overline { (b+c)(a+c)(a+b) \)
\( \overline {abc} = 100a + 10b + c \vdots ( a +b +c ) \)
\( \overline { (b+c ) (a+c)(a+b) } = ( b + c ) 100 + ( a +c )10 + (a+b) \)
\( = 100b + 100c + 10a +10c + a + b = \)
\( = 11a + 101b + 110c \)
\( = ( 11a + 11b + 11 c ) + ( 90b+99c ) \)
\( = 11 ( a+ b+ c ) + ( 90b + 99c ) \)-> Notam relatia cu *
1) a + b +c | 100 + 10b + c
2) a + b + c | a+ b + c => a + b +c | 100 ( a + b+ c )
=> a+ b + c |100a + 100b + 100c
(1) = a +b +c | 100a+10b+c
=> a+b+c | 100a+100b+100c - 100a - 10b- c
=> a + b + c | 90b + 99c -> Notam relatia cu **
Cum a+b+c |11 ( a+b+c)
a+b+c | 90b + 99c =>
a + b+c | 11 ( a+b+c ) + 90b + 99c = \( \overline { (b+c)(a+c)(a+b) \)
-
Marcelina Popa
- Bernoulli
- Posts: 208
- Joined: Wed Mar 05, 2008 3:25 pm
- Location: Tulcea
- Contact: