Concursul "Congruente", problema 1

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Concursul "Congruente", problema 1

Post by Claudiu Mindrila »

Fie \( x,y \in \mathbb{R} \) astfel incat \( x-5y+3=0 \) si \( x \in [-3,2] \). Sa se arate ca \( \sqrt{x^2+y^2+6y+9}+\sqrt{x^2+y^2-4x-2y+5}=\sqrt{26} \).
Gazeta Matematica
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
radus
Posts: 4
Joined: Fri Oct 24, 2008 2:39 pm

Post by radus »

Sub primul radical trebuia 6x in loc de 6y, cred.
Radu
Marcelina Popa
Bernoulli
Posts: 208
Joined: Wed Mar 05, 2008 3:25 pm
Location: Tulcea
Contact:

Post by Marcelina Popa »

Si eu cred la fel.

Exista si o rezolvare geometrica. Fie punctele \( M(x,y),\ A(-3,0),\ B(2,1) \). Atunci relatia care trebuie demonstrata devine: \( MA+MB=AB \). Acest lucru rezulta din coliniaritatea punctelor \( A \), \( M \) si \( B \), ale caror coordonate verifica ecuatia aceleiasi drepte: \( x-5y+3=0 \).
Post Reply

Return to “Clasa a VIII-a”