Inegalitate numere complexe de modul 1

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Inegalitate numere complexe de modul 1

Post by Cezar Lupu »

Sa se arate ca pentru orice numar \( z\in\mathbb{C} \) cu \( |z|=1 \)
are loc inegalitatea:

\( \sqrt{2}\leq |1-z|+|1+z^{2}|\leq 4 \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Andrei Ciupan
Euclid
Posts: 19
Joined: Thu Sep 27, 2007 8:34 pm

Post by Andrei Ciupan »

Fie \( z=\cos a+ i\sin a, a\in [0;2\pi]. \)
Atunci \( |1-z|=\sqrt{(1-\cos a)^{2}+\sin^{2} a}=\sqrt 2\cdot\sqrt{1-\cos a}\geq\sqrt{2}, \) deci inegalitatea din stanga este rezolvata.

Apoi \( |1+z^{2}|=\sqrt{(\cos 2a+1)^{2}+\sin^{2} 2a}=\sqrt{2(1+\cos 2a)}=2\|cos a| \).

Notam \( x=\sqrt{1-\cos a}, x\in(0;\sqrt{2}) \) si trebuie sa aratam ca are loc inegalitatea \( x\sqrt{2}+2|x^{2}-1|\leq 4 \).

Daca \( x\geq 1 \), atunci inegalitatea e echivalenta cu \( (x-\sqrt{2})(2x+ 3\sqrt{2})\leq 0 \), adevarat, iar daca \( x<1, \) atunci e echivalenta cu \( 2x^{2}-x\sqrt{2}+2\geq 0 \), care este adevarata pentru orice x.
Andrei Ciupan.
User avatar
Wizzy
Euclid
Posts: 25
Joined: Sat Sep 29, 2007 11:20 pm
Location: Craiova

Post by Wizzy »

Cred ca la inegalitatea din partea dreapta nici nu trebuia sa folosim forma trigonometrica a lui \( z \).Mergea foarte bine cu inegalitatea modulelor:
\( \left|1-z\right|+\left|1+z^2\right| \leq 2+\left|-z\right|+\left|z^2\right|=2+\left|z\right|+\left|z\right|^2=4 \)
Vrajitoarea Andrei
Post Reply

Return to “Clasa a X-a”