Fie \( A \in \mathcal{M}_n(\mathbb{C}) \) o matrice cu proprietatea ca
\( S(A) = S(A^2) = \cdots = S(A^n) = 0 \),
unde \( S(A^k) \) este suma tuturor elementelor matricei \( A^k \), \( k = \overline{1,n} \). Sa se arate ca:
\( a) \) \( \det A = 0 \).
\( b) \) \( S(A^k) = 0 \), \( \forall k\in\mathbb{N}^* \).
\( c) \)Sa se dea exemplu de matrice nenula \( A \) cu proprietatea din enunt.
Concursul interjudetean Papiu, Tg Mures, 2008 (cls 12)
Matrice cu suma elementelor zero
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti
Matrice cu suma elementelor zero
A mathematician is a machine for turning coffee into theorems.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)