Proprietate pentru un sir crescator (a_n)

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
Razvan Balan
Euclid
Posts: 16
Joined: Tue Feb 19, 2008 10:10 pm

Proprietate pentru un sir crescator (a_n)

Post by Razvan Balan »

Fie \( (a_n)_{n\geq1} \) un sir crescator de numere reale pozitive. Demonstrati ca
\( \lim_{n\to\infty}\sqrt[n]{a_1^n+a_2^n+...+a_n^n}=\lim_{n\to\infty}a_n \).
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

\( a^n < a_1^n+a_2^n+...+a_n^n < n a_n^n \)

\( a_n <\sqrt[n]{a_1^n+a_2^n+...+a_n^n} < \sqrt[n]{n} \cdot a_n \)

Din T. Clestelui rezulta ca
\( \lim_{n\to\infty} \sqrt[n]{a_1^n+a_2^n+...+a_n^n} =\lim_{n \to \infty} a_n \)
Post Reply

Return to “Analiza matematica”