1. Sa se rationalizeze \( \frac{4}{\sqrt{1+\sqrt{3}}}. \)
2. Sa se det multimea \( A =\{n\in\mathbb{N} | \sqrt{\frac{2n+1}{n-3}}\in\mathbb{N}\} \).
3. Sa se rezolve ecuatia \( |x-2|-2=|2x+1| \).
4. Sa se rezolve ecuatia \( [2x+1/3] =4-x/3 \).
5. Fie a, b nr reale pozitive. Sa se arate ca
\( (1+ a/b)^n+(1+b/a)^n>2^{n+1},\ n \in \mathbb{N}. \)
6. Fie \( a\in\mathbb{Q}^* \) o aproximare pt \( \sqrt{\frac{7}{3}} \). Sa se demonstreze ca \( \frac{9a+7}{9(a+1)} \) este o aproximare "mai buna" a aceluiasi numar.
Cateva probleme de clasa
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
1. \( \frac{4}{\sqrt{1+\sqrt{3}}} \)=\( \frac{4 \sqrt{{\sqrt3}-1}}{sqrt{3-1}} \)=\( 2 \sqrt{2\sqrt{3} -2} \)
2. \( n-3 | 2n+1 \), dar \( n-3 | 2n-6 \), rezulta \( n-3 | 7 \), deci \( n \in \lbrace {4,10} \rbrace \) dintre care doar n=4 indeplineste conditia.
3. \( |x-2|-2=|2x+1| \)
\( |x-2| \geq 2 \to x\in (-\infty,0) \cup (4, \infty) \)
pt \( x\geq 4 \)
\( |2x+1|=2x+1>x-4=|x-2|-2 \) nu avem solutii in acest caz
pt \( x\leq 0 \)
cazul I \( x\leq -\frac{1}{2} \)
\( -x=-1-2x \) \( \to \)\( x=1 \)
cazul II \( 0 \geq x \geq -\frac{1}{2} \)
\( -x=1+2x \) \( \to \) \( x=-\frac{1}{3} \)
Deci \( x\in\lbrace{-\frac{1}{3},1 \rbrace \)
2. \( n-3 | 2n+1 \), dar \( n-3 | 2n-6 \), rezulta \( n-3 | 7 \), deci \( n \in \lbrace {4,10} \rbrace \) dintre care doar n=4 indeplineste conditia.
3. \( |x-2|-2=|2x+1| \)
\( |x-2| \geq 2 \to x\in (-\infty,0) \cup (4, \infty) \)
pt \( x\geq 4 \)
\( |2x+1|=2x+1>x-4=|x-2|-2 \) nu avem solutii in acest caz
pt \( x\leq 0 \)
cazul I \( x\leq -\frac{1}{2} \)
\( -x=-1-2x \) \( \to \)\( x=1 \)
cazul II \( 0 \geq x \geq -\frac{1}{2} \)
\( -x=1+2x \) \( \to \) \( x=-\frac{1}{3} \)
Deci \( x\in\lbrace{-\frac{1}{3},1 \rbrace \)