problema discurilor tangente "kissing disks"

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata, Virgil Nicula

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

problema discurilor tangente "kissing disks"

Post by Cezar Lupu »

Fie \( D(r_{i}), i=1, 2, \ldots, n \), \( n\geq 6 \), discuri deschise disjuncte, de raze \( r_{i} \), tangente la un disc de raza \( r \). Atunci \( H(r_{1}, r_{2}, \ldots, r_{n})\geq r \).

( \( H(a_{1}, a_{2}, \ldots, a_{n}) \) reprezinta media armonica a numerelor \( a_{1}, a_{2}, \ldots, a_{n} \).)


Barany, Furedi, Pach, Canadian Journal of Mathematics 1984
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Banuiesc ca si discurile din exterior trebuie sa fie tangente intre ele pentru ca altfel le putem face suficient de mici ca inegalitatea sa nu mai aiba loc.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Geometrie”