Fie \( D(r_{i}), i=1, 2, \ldots, n \), \( n\geq 6 \), discuri deschise disjuncte, de raze \( r_{i} \), tangente la un disc de raza \( r \). Atunci \( H(r_{1}, r_{2}, \ldots, r_{n})\geq r \).
( \( H(a_{1}, a_{2}, \ldots, a_{n}) \) reprezinta media armonica a numerelor \( a_{1}, a_{2}, \ldots, a_{n} \).)
Barany, Furedi, Pach, Canadian Journal of Mathematics 1984
problema discurilor tangente "kissing disks"
Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata, Virgil Nicula
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Banuiesc ca si discurile din exterior trebuie sa fie tangente intre ele pentru ca altfel le putem face suficient de mici ca inegalitatea sa nu mai aiba loc.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog